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Abstract

3D Gaussian Splatting (3DGS) has shown impressive
results for the novel view synthesis task, where lighting
is assumed to be fixed. However, creating relightable 3D
assets, especially for objects with ill-defined shapes (fur,
fabric, etc.), remains a challenging task. The decomposition
between light, geometry, and material is ambiguous,
especially if either smooth surface assumptions or surface-
based analytical shading models do not apply. We propose
Relightable Neural Gaussians (RNG), a novel 3DGS-
based framework that enables the relighting of objects
with both hard surfaces or soft boundaries, while avoiding
assumptions on the shading model. We condition the
radiance at each point on both view and light directions. We
also introduce a shadow cue, as well as a depth refinement
network to improve shadow accuracy. Finally, we propose
a hybrid forward-deferred fitting strategy to balance
geometry and appearance quality. Our method achieves
significantly faster training (1.3 hours) and rendering (60
frames per second) compared to a prior method based on
neural radiance fields and produces higher-quality shadows
than a concurrent 3DGS-based method.

1. Introduction

Creating 3D assets from multi-view captures of the real
world is an effective way for content creation, avoiding
manual modeling labor. The resulting 3D assets can be
objects with well-defined surfaces or ill-defined shapes
(e.g., fur, fabric, grass, etc.), as both are important in many
applications. Unfortunately, if we want the resulting assets
to be relightable, the task is still challenging because of
the ill-posed nature of the decomposition between light,
materials, and geometry. This is especially true for
complex non-smooth materials, which raise difficulties in
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decomposition, as surface-specific constraints or surface-
based analytical shading models cannot be leveraged. In
this paper, we aim to relight objects with clear surfaces
or soft boundaries given multi-view captured images
with varying illumination, simultaneously achieving high-
quality relighting and shortening training/rendering times.

After ground-breaking view-synthesis work on Neural
Radiance Fields (NeRF) [20] and 3D Gaussian Splatting
(3DGS) [15], extensive efforts have focused on reconstruct-
ing relightable 3D assets [9, 13, 14, 17–19, 24]. However,
these methods mostly rely on surface shading models and
introduce surface constraints (including the assumption
of valid normals), preventing them from reconstructing
objects with soft boundaries and/or materials that are not
well represented with simple analytic models. Recently,
NRHints [27] enabled relightable capture of both smooth
surfaces and objects with soft boundaries by using input
views with a moving point light and a neural appearance
model. Being based on a NeRF framework, NRHints
suffers from high training/rendering time costs and some
over-smoothing of detail. The concurrent work GS3 [2]
uses the same capture setup but instead uses 3DGS as the
underlying framework, which is more efficient in training
and rendering, and captures finer details. With the less
accurate geometry obtained from 3DGS, GS3 has relatively
lower shadow quality.

In this paper, we propose Relightable Neural Gaussians
(RNG), a novel 3DGS-based framework for relighting
objects with both clear surfaces and soft boundaries. We
implicitly model the radiance of objects by learning latent
(feature) vectors at each neural Gaussian. To interpret
neural Gaussians, we use the neural Gaussian decoder
network, and condition it on the view and light directions.
Analytical assumptions in shading models and surface
constraints are avoided in our neural representation, making
it capable of learning appearances that do not fit well into
those constraints.

Following prior work [27], we utilize views with a mov-
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ing point light, to observe many view/light combinations
and reduce ambiguities in decomposition. However, point
lights produce sharp shadows, which are challenging for
neural networks to capture accurately. We present a shadow
cue with depth refinement to condition the neural Gaussian
decoder, improving the shadow quality. We also introduce
a two-stage hybrid (forward-deferred) optimization pipeline
for better shadow appearance.

In our results, RNG shows not only higher-quality details
than the NeRF-based prior method NRHints, but also
more accurate shadows than the concurrent 3DGS-based
approach GS3. In terms of performance, RNG takes about
1.3 hours for training and achieves a 60 frame per second
(fps) rendering performance on an RTX 4090 GPU, which
is competitive with 3DGS and GS3 and many times faster
than NRHints.

To summarize, our main contributions include
• a relightable neural Gaussian framework to render

objects with smooth surfaces or soft boundaries, under
arbitrary view and light directions, and with no analytic
assumptions on the shading model,

• a shadow cue technique and a depth refinement network
to enhance the quality of shadows, and

• a hybrid (forward-deferred) optimization strategy, achiev-
ing high-quality reconstruction and sharp shadow appear-
ance.

2. Related work

2.1. Inverse rendering
Inverse rendering [1, 19, 29] decomposes the light, material,
and geometry with multi-view RGB inputs, and the
decomposed assets can be relit under any desired novel
lighting. To represent the materials, several methods
introduce a standard shading model similar to the Disney
Principled BRDF [5] as a physically-based prior, and neural
materials [32] can also be utilized for material recovery.
With the representation capacity of NeRF, some methods [3,
4, 26, 28] produce high-quality inverse rendering at the cost
of high training consumption and slow rendering speed. Jin
et al. [14] use grid features to represent the scenes, leading
to relatively fast training speed. Zhang et al. [33] adopts the
SGGX Microflake model [11] to perform inverse rendering,
achieving unique effects for semi-transparent targets. SDFs
are also commonly used in the representations [17, 24, 30],
leading to smoother surface normals but biasing the method
to objects with relatively smooth surfaces.

3DGS brings the rasterization framework into multi-
view stereo reconstructions. However, this nature of 3DGS
also hurts the quality of its obtained geometric attributes,
such as depth and normal, making them noisy and difficult
for further use. Some existing methods [6, 7, 10, 12]
bring constraints or introduce meshes into the Gaussians,

improving the geometry quality. By introducing analytical
shading models, several works utilize 3DGS to achieve
inverse rendering under unknown environment lighting.
Jiang et al. [13] and Shi et al. [23] supervise the normals via
the orientation of Gaussians, while Gao et al. [9] and Liang
et al. [18] leverage depth to obtain the normal information.

Compared to NeRF-based methods, 3DGS-based meth-
ods are more efficient and handle soft-boundary objects
better due to their flexible representation. Therefore, we
choose to use 3DGS as the underlying framework. Further,
previous approaches with surface priors fail to handle soft
objects, and the fixed types of analytical models also limit
the application. In contrast, our method generalizes across
a wider range of scenarios without such assumptions.

2.2. Relighting of ill-defined shapes

Most existing inverse rendering methods cannot simply
extend to soft-boundary objects, due to the incompatibility
of shading models and the challenging light transport in
such scenes. Gao et al. [8] present Deferred Neural
Relighting, which leverages learned neural texture on a
rough proxy geometry for relighting objects including fluffy
shapes. Mullia et al. [21] propose a novel representation
that combines explicit geometry with a neural feature grid
and an MLP decoder, achieving high-fidelity rendering and
relighting with good flexibility and integration. Unlike
our method, they only support synthetic inputs and require
ground-truth geometry.

Recently, Zeng et al. [27] proposed NRHints, which
maintains an implicit neural representation with both
SDF and NeRF-style feature grids, and predicts radiance
with shadow and highlight hints, achieving high-quality
relighting. However, NRHints is computationally heavy
in training and rendering, and tends to over-smooth soft
objects, especially at boundaries. Our concurrent work
GS3 [2] introduces triple splatting to relight objects. They
introduce analytical appearance approximation that is also
supplemented by neural networks, enabling high-efficiency
relighting for fluffy objects as well. GS3 still suffers
from the inherent lower-quality geometry of Gaussian point
cloud, leading to less sharp shadow appearance.

We target the same problem as in NRHints and GS3,
and use point-lit images as input as well. However, we
introduce neural Gaussians, avoiding surface constraints
and shading model assumptions, gaining more flexibility
in representation. We further propose the shadow cue with
depth refinement to enhance the shadow quality, and design
a hybrid optimization strategy. Overall, RNG achieves faster
training/rendering and finer details than NRHints, as well as
higher shadow quality under point lights than GS3.
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Figure 1. The overview of RNG. Each Gaussian point in the scene contains an extra latent vector that describes the reflectance. The latent
values interpreted by an MLP decoder, conditioned on view and light directions. Training has two stages. In the first stage, we employ
forward shading, where we decode all the latent vectors of Gaussian points into colors, followed by the alpha blending. In the second
deferred shading stage, we first alpha-blend the neural Gaussian features to get an aggregated feature, and then we feed it to the decoder.
We apply shadow mapping to obtain a shadow cue map and use the shadow cue as an extra input for the decoder in the second stage.

3. Method
The goal of our work is to reconstruct high-quality
relightable assets for objects with both hard surfaces
and soft boundaries while maintaining fast training and
rendering time. We propose relightable neural Gaussians
(Sec. 3.2) to implicitly model the reflectance. We also apply
a shadow cue with depth refinement (Sec. 3.3) to improve
the quality of shadows and design a hybrid forward-
deferred optimization strategy (Sec. 3.4) to further improve
the shadow appearance while preserving the quality of
geometry. Fig. 1 illustrates the overview of our method.

3.1. Background: 3D Gaussian Splatting
3DGS represents a scene with a set of 3D Gaussians, each
of which is defined as

Gaussian(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where x is a position in the scene, µ is the mean of the
Gaussian, and Σ denotes the covariance matrix of the 3D
Gaussian, which is factorized into a scaling matrix S and a
rotation matrix R as Σ = RSSTRT . To render an image,
3DGS projects the 3D Gaussians onto the 2D image plane
and employs alpha blending on the sorted Gaussians as

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (2)

where ci is the color of each Gaussian, and αi is given
by evaluating a projected 2D Gaussian with covariance
Σ′ multiplied with a learned per-point opacity. In 3DGS,
the alpha blending of color ci (which depends on the
view direction and is represented by spherical harmonics)
from every nearby Gaussian point yields the reflectance at
position x.

3.2. Relightable neural Gaussians
Existing 3DGS-based relighting methods leverage analyt-
ical shading models and/or surface assumptions. Instead,
we use a learned latent space to implicitly represent the
view- and light-dependent reflectance in the scene. As
shown in Fig 1, each Gaussian point carries a latent (feature)
vector that models this reflectance. To enable relightability,
the reflectance has to be dependent on not only the view
directions ωo but also the light directions ωi. Therefore,
the network can decode and predict the reflectance values
at novel light positions. The final reflectance is represented
as

ρ(x, ωo, ωi) = Θ(x|ωo, ωi), (3)

where Θ is the neural Gaussian decoder and x is the
shading point with its corresponding latent vector. This
reflectance value is analogous to the BRDF times cosine
term from the standard rendering equation, and needs to
be multiplied by light intensity and light falloff to obtain
final radiance from a point light. When applying novel
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Figure 2. The effect of the depth refinement network. The
weighted sum of Gaussian depths is not accurate, resulting in
mismatching shadow cues. Therefore, we propose a depth
refinement network to correct the depth.

lighting conditions, the network takes the given point
light positions and view directions as conditioning inputs,
leading (after combining with incoming light intensity) to a
neural implicit relightable radiance representation.

3.3. Shadow cue
With our proposed neural Gaussians, the reflectance at
positions in the scene can be represented by latent vectors
stored in each Gaussian point. However, there are still
some potential quality issues. First, the network tends to
over-fit all view/light directions in the training set, resulting
in blurry or incomplete shadows in unseen predictions or
inconsistent shapes in movement. Second, point lights yield
sharp shadows, and the MLP is prone to over-smooth such
high-frequency signals.

To address the above issues, we introduce a shadow cue
to condition the neural Gaussian decoder. The shadow cue
is a 1-channel map in the screen space that indicates the
visibility to the light of each shading point and will be fed
into the MLP together with other inputs described in Eq. 3.

We obtain the shadow cue by performing shadow
mapping under the 3DGS framework. Shadow mapping
requires the precise locations of shading points. However,
since we do not explicitly trace rays, we can instead use the
depth value for each pixel for shading point computation.
Obtaining the depth values of a Gaussian cloud is not
well-defined. Therefore, we introduce a depth refinement
network to correct the depth values and help find the valid
shading points.

Depth refinement. An intuitive and naive proxy for the
depth is the weighted sum of the depth and opacity of each
Gaussian,

z̄ =
Σαizi
Σαi

, (4)

where zi is the depth value of ith Gaussian on the camera ray
and αi is its opacity. However, sometimes the weighted sum
is incorrect, leading to wrongly located shading points and
consequently mismatching shadow cues. We discuss and

(a) Splat to get a depth (c) Splat to shadow camera

Shadow camera

Depth

(b) Re�ine the depth

Depth
re�inement

MLP

Shadow	cue

Figure 3. The illustration of shadow cue computation. First, we
splat the Gaussians onto the camera to get depth values. Then,
we run the depth refinement network to correct them and locate
the shading points P . At last, we splat the shading points onto
the shadow camera to find the intersections of shadow rays Q, and
store the distance |PQ| as the shadow cue.

showcase this situation in the supplementary. To address
this issue, we propose a depth refinement network to correct
the shading point locations by learning a scaling factor,
as shown in Fig. 2. We assume the depth correction is
linear for each pixel and dependent on view directions ωo.
Therefore, the refined depth value is obtained by

z̄′ = z̄ · Φ(ωo), (5)

where Φ is the depth refinement MLP.

Shadow mapping. Conventional shadow mapping
marches the ray to get visibility, which can be expensive
and difficult to achieve. Instead, under the 3DGS
framework, we perform an extra pass of Gaussian splatting
to cast shadow mapping. We obtain the shadow cue in
the following steps, as shown in Fig. 3. First, we splat
Gaussians onto the camera and record the depth values of
each pixel. Second, we run the depth refinement network
to correct the depth and calculate a shading point P for
each pixel based on the pixel depth. After this, we set
a virtual shadow camera at the point light position. We
splat Gaussians onto the shadow camera for a second pass,
recording the depth to find a shading point Q for each
pixel in the shadow camera. We project P into the shadow
camera frame to find its corresponding Q. Since Q is
equivalently the shadow ray intersection, the distance |PQ|
is recorded as the shadow cue for this pixel.

Note that for computational efficiency, we omit the depth
refinement when we obtain the shadow camera depth. With
shadow cues, the neural Gaussian decoder takes multiple
inputs, and all of them contribute to the final color of a
single Gaussian point. The final reflectance is represented
as

ρ(x, ωo, ωi) = Θ(x|ωo, ωi, V ), (6)

where V is the shadow cue. In practice, we use the same
resolution as the camera for the shadow camera, and we
apply a clamping between zero and the scene units to the
shadow cue map for the stability of training.
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3.4. Hybrid optimization
With all the components above, we now have the RNG
framework, where the scene is represented as a structure of
neural Gaussian points, and the reflectance at each Gaussian
point is represented as a feature vector that is conditioned on
view/light directions and shadow cues. The adjusted 3DGS
rasterization operation becomes

Cforward =
∑
i∈N

Θ(xi|ωo, ωi, S, V )αi

i−1∏
j=1

(1− αj), (7)

where Cforward is the color at each pixel. We call this
rasterization procedure forward shading.

In forward shading, the alpha blending after the
reflectance computation blurs the shadow. To address this
problem, we introduce the deferred shading.

Deferred shading. In deferred shading, we blend the
feature vectors of Gaussians first to get an aggregated
feature in image space, and then we decode it with the
neural Gaussian decoder. In this case, we propose the
rasterization of deferred shading as

Cdefer = Θ(
∑
i∈N

xiαi

i−1∏
j=1

(1− αj)|ωo, ωi, V ). (8)

To our observation, forward shading produces better
geometry and worse shadow, while deferred shading
improves the shadow appearance but causes floaters.
Therefore, we design a two-stage hybrid optimization
strategy to benefit from both options. Further investigation
into this choice is discussed in the supplementary.

Two-stage strategy. The whole training procedure of
RNG consists of two stages. We employ forward shading
in the first stage to get Gaussian points and latent vectors
and use deferred shading in the second stage. In the second
stage, we enable the shadow cue and re-train the neural
Gaussian decoder. We keep all learned latent vectors in
the first stage as initialization of the second stage, in order
to provide more semantic information and accelerate the
training of the second stage. Note that in the first stage,
we do not enable the shadow cue, because at the early stage,
the Gaussians are not well-shaped, and the generated wrong
shadow information may hurt the training stability.

4. Results
In this section, we validate the effectiveness and quality
of RNG. We first provide the implementation details in
Sec. 4.1, and describe about the experiment setups in
Sec. 4.2. Then, we evaluate our method with quantitative
results in Sec. 4.3 and provide ablation studies in Sec. 4.4.

4.1. Implementation
We implemented our method using the Pytorch [22]
framework. The feature vector in each Gaussian is 16-
channel, and the neural Gaussian decoder is an MLP
with 4 hidden layers and 256 hidden units. We
apply frequency encoding to both view/light directions
and shadow cues, making them 15 dimensions and 17
dimensions, respectively. We use the Adam optimizer [16]
and train it at a learning rate 1.0 × 10−3 for the color
decoder MLP, 3.0 × 10−4 for the depth refinement MLP
and 2.5× 10−3 for feature vectors in Gaussian points. The
same loss functions from 3DGS [15] are used, which is
a combination of L1 loss and structural similarity index
(SSIM) [25]. We train the model for a total 100k steps,
and the forward shading stage usually takes the first 30k
iterations. In order to improve the computational efficiency,
we cache the shadow cue for each training view and only
update them every 5 iterations. We run all our results on
an RTX 4090 GPU and i9-13900K CPU, powered by a
Windows Subsystem Linux 2 (Ubuntu 22.04.5) distribution.

4.2. Experiment setups
Datasets. We validate our relighting quality by compar-
ing it to previous methods on real and synthetic datasets
from NRHints [27] and RNA [21]. We run all results on
down-sampled datasets with 512 × 512 resolution and a
maximum of 1000 training views. For synthetic data, all
backgrounds are colored in black.

Comparing methods. We select four representative
NeRF-/GS-based relighting methods for comparison. For
validating the relighting quality under point lights, we
compare with NRHints [27] and GS3 [2]. Furthermore, we
compare with GS-IR [18] and Relightable 3D Gaussian [9]
to validate the relighting under environment lights. Note
that NRHints and GS3 also describes an additional
optimization on camera poses to compensate for the
calibration precision of NRHints datasets, but we disable
it for a fair comparison.

Metrics. We provide the peak signal-to-noise ratio
(PSNR), SSIM, and perceptual similarity (LPIPS) [31]
values for comparison, to compare both pixel-wise error and
visual differences.

4.3. Quality validation
In Fig. 4, we compare our relighting results with NRHints
and GS3 under point lighting on real-world objects and
synthetic scenes. We provide renderings under novel
views/lights and their difference maps for comparison.
Both GS3 and our method have finer details, especially
for furry objects. Both NRHints and our method handle
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Table 1. Comparison of various scenes between NRHints [27], GS3 [2] and our method. We provide (from left to right) PSNR (↑),
SSIM (↑), and LPIPS (↓) for comparison, and the best/second-best results are colored in red / orange , respectively. We produce the best
or second-best results on most scenes and with better PSNR, SSIM, and LPIPS values on average, indicating high-fidelity reconstruction
and realistic details in our renderings.

Scene NRHints[27] GS3 [2] Ours

Cat 28.3712 0.8751 0.1318 26.0850 0.8815 0.1019 28.3869 0.8883 0.0847
CatSmall 35.4472 0.9705 0.0450 34.4018 0.9729 0.0390 34.7511 0.9699 0.0377
Cluttered 32.1470 0.9434 0.0629 30.2874 0.9443 0.0489 30.7970 0.9442 0.0456
CupFabric 38.1833 0.9831 0.0256 37.1364 0.9830 0.0236 38.5429 0.9857 0.0170
Fish 30.2113 0.9000 0.1176 30.8571 0.9180 0.0668 31.0113 0.9195 0.0561
FurBall 26.7098 0.9340 0.0524 26.3552 0.9309 0.0577 27.8211 0.9263 0.0436
HairBlonde 32.4589 0.9497 0.0388 32.9148 0.9715 0.0194 34.7907 0.9731 0.0147
Hotdog 32.8954 0.9728 0.0227 25.4029 0.9489 0.0483 30.3820 0.9603 0.0339
Lego 29.5974 0.9559 0.0300 26.6257 0.9226 0.0514 26.7235 0.9244 0.0506
Pikachu 33.5846 0.9716 0.0248 32.1464 0.9697 0.0294 31.3826 0.9661 0.0289
Pixiu 31.4333 0.9360 0.0751 30.3765 0.9371 0.0640 30.3485 0.9410 0.0540
RedCloth 34.0962 0.9186 0.1002 31.6039 0.9328 0.0489 35.2186 0.9489 0.0282
WhiteFur 23.4099 0.8871 0.1004 32.8326 0.9662 0.0220 33.7007 0.9700 0.0140

Average 31.4266 0.9383 0.0636 30.5404 0.9446 0.0478 31.8352 0.9475 0.0392

Table 2. Comparison of relighting under novel environment lighting with prior GS-based relighting methods [9, 18]. We provide (from left
to right) PSNR (↑), SSIM (↑) and LPIPS (↓) for comparison, and the best/second-best results are colored in red / orange , respectively.
Our model significantly improves the accuracy in decomposing light and materials, yielding overall prevailing metrics.

Scene GS-IR[18] Relightable 3D Gaussian[9] Ours

Armadillo 30.4157 0.8726 0.0316 24.4747 0.8765 0.0327 37.0618 0.9062 0.0145
CupPlane 20.7918 0.8577 0.0640 25.5422 0.9083 0.0292 28.7075 0.9189 0.0281
HairBlue 26.6556 0.8154 0.0796 20.7416 0.8187 0.0721 31.3762 0.8731 0.0700
HairYellow 23.2272 0.7996 0.1308 25.3962 0.8266 0.1152 25.6469 0.8527 0.1102

Average 25.2726 0.8363 0.0765 24.0387 0.8575 0.0623 30.6981 0.8877 0.0557

the shadow effects well, producing more solid and sharp
shadow regions. We typically have lowest LPIPS and
highest/second-highest PSNR and SSIM values, indicating
the overall quality of our method. In terms of training time,
both GS3 and our method are significantly faster (more than
20×) than NRHints.

In Table 1, we also report the statistics of NRHints, GS3,
and our method on a series of datasets. Our method has
overall lower LPIPS and close SSIM values to GS3, as we
have better details. Since we also introduce the shadow cues
and hybrid optimization, the shadow quality also increases
the realism of our renderings. We are also competitive with
NRHints in terms of pixel-wise errors with much lower
training/rendering time cost, thanks to the efficiency of
3DGS and the flexibility of neural appearance models.

In Fig. 5, we provide the relighting results under novel
environment lighting and compare them with prior GS-
based methods [9, 18], and report the quantitative results

across different datasets in Table 2. We run their methods
with datasets under unknown environment lighting, and run
our method with the same amount of training views under
point lights, to be as fair as possible. After training all
models, we relight them under the same novel environment
map for quality comparison. Our method produces closer
appearance to the reference and more plausible shadow
effects, achieving higher PSNR/SSIM and lower LPIPS
values. Our method benefits from two aspects: the point-lit
input images and the neural appearance model. Capturing
with point lights helps us better decompose the lighting
and materials, and the neural appearance model can handle
complex light transport such as sub-surface scattering and
hair fiber scattering, leading to overall better results.

In our supplementary materials, we provide additional
validation and visualization of our learned geometry
and shadows and the relighting quality with moving
lights/views. We also validate the power of neural
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GS3 (~1 hour) Ours (~1.3 hours)

33.0812 | 0.9595 | 0.0270 33.1967	|	0.9623	|	0.0172

WhiteFur

ReferenceNRHints (~26 hours)

22.8034 | 0.8500 | 0.1273

Fish

Cat

26.9651 | 0.8478 | 0.1553 25.5781 | 0.8676 | 0.1090 27.0613	|	0.8643	|	0.0946

27.2085 | 0.9445 |	0.038725.8700 | 0.9388 | 0.058728.5176	|	0.9495	|	0.0411

Hotdog

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

28.6495	|	0.9235	|	0.042728.4255 | 0.9178 | 0.062326.2944 | 0.8624 | 0.1473 PSNR | SSIM | LPIPS

Fish

Hotdog

WhiteFur

Figure 4. Comparison between NRHints [27], GS3 [2] and our method on real/synthetic datasets under point lights. The best/second-best
results are marked as bold/italic, respectively. Our method has the lowest LPIPS with the shown images and is also the best or second-best
in PSNR and SSIM values. Our method also has better shadow areas than GS3.

GS-IR ReferenceOurs

26.1621

Relightable GS

22.9300 14.6757 28.0282	23.9514 26.0756 

31.6699	15.6282 20.2044 31.0758	|	0.7578	|	0.012216.2373 | 0.8458 | 0.035325.2326 | 0.7064 | 0.0342

CupPlane HairYellow

HairBlueArmadillo30.0067	22.5417 13.0382
GS-IR ReferenceOursRelightable GS

Figure 5. Comparison of relighting results under environment lighting with PSNR values of each image. We compare our relighting results
with some previous GS-based methods [9, 18] and the ground truth. Our method decomposes the light and materials better and achieves
better relighting, as we utilize point-lit images and the neural appearance model.

appearance by comparing it to vanilla 3DGS. Please refer
to them for more details.

4.4. Ablation study

Ablation of all components. In Fig. 6, we show the
ablation of our model by gradually removing the depth
refinement MLP, the shadow cue, and the deferred shading.
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Figure 6. The ablation study of RNG components. We gradually
remove them from our full model and show the quality gap
between them with PSNR values. The shadow quality is
significantly decreased without these components, and the PSNR
values also demonstrate their effectiveness and necessity.

Reference

without
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re�inement
network

Shadow cue

Shadow cue Shadow cue

Shadow cue

Shadow cue diff. Shadow cue diff.

with
depth
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Figure 7. The comparison of results with/without depth refinement
MLP and the visualizations of corresponding shadow cues. The
corresponding positions of shadow cues in both cases are marked
with red arrows and dotted lines. With the depth refinement,
the shadow mapping gives more reasonable and matched shadow
cues, helping the network to better condition the appearance of the
shadow information.

The quality gap indicates the effectiveness and necessity of
all the components of RNG. We also provide the ablation
study on network sizes in our supplementary.

Effect of depth refinement network. In Fig. 7, we show
the significance of the depth refinement network. We
compare the shapes and positions of the cast shadows
via shadow mapping with/without the depth refinement
network. As a result, there is obvious mismatching in
positions with the ground truth if we remove the depth
refinement network. The model can more accurately locate
the shading points and generate more reasonable shadow

Reference

23.1277 | 0.9506 | 0.0735

Ours

Shadow cue PSNR | SSIM | LPIPS

Figure 8. Comparison of our method and the ground truth on
highly reflective objects. Our result blurs the reflection, as we did
not introduce ray marching into our framework.

cues with depth refinement.

4.5. Discussion and limitations
Precision of our representation. RNG shows less accu-
racy in terms of PSNR values in some scenes than NRHints.
The main reason is that NRHints uses an SDF as a powerful
prior, which gives very accurate shadows for objects that
are clearly surface-like. Furthermore, NRHints uses larger
networks than ours; we trade off between quality and
computational overhead.

Geometry quality. Although we deploy the shadow cue
to help the network predict better shadow appearances,
the shadow quality is still limited by the geometry
reconstruction precision. A perfect geometry reconstruction
for soft-boundary objects is not trivial. Therefore, we suffer
from this disadvantage like most GS-based approaches.

Complex material effects. RNG can handle objects with
both hard surfaces and ill-defined shapes. However, since
we use rasterization instead of ray marching, it is difficult
for our model to handle highly reflective appearances. We
also show a failure case in Fig. 8. The reflection of the
checkerboard is blurry on the dice, and the reflected shadow
is incomplete.

5. Conclusion
In this paper, we have proposed RNG for relighting both
surface-based and soft-boundary objects under the 3DGS
framework. The proposed neural Gaussian framework
avoids assumptions on shading models, and the shadow
cue helps produce sharp shadows, together with our
hybrid optimization strategy. RNG can render high-fidelity
details and high-quality shadow effects, achieving real-time
rendering with a significantly improved training (1.3 hours)
and rendering (60 fps) performance, compared to prior
work.

There are still many potential future research directions.
For example, introducing reflection and refraction into
the existing framework may be promising. Loosening
the requirement on the lighting conditions and supporting
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more flexible capture setups would be valuable but also
challenging. Another potential direction is to explore a
more accurate definition of depths in a Gaussian splatting
framework, further improving the shadow quality.
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RNG: Relightable Neural Gaussians

Supplementary Material

We propose RNG, a novel relightable asset with neural
Gaussians. Without assumptions in the shading model and
geometry types, we enable the relighting for both fluffy
objects and surface-like scenes. In this supplementary
material, we provide extra quality validation and metrics in
Sec. 6, and discuss the choice in hybrid optimization and
the network size in Sec. 7.

6. Additional validation
In Fig. 9, we visualize the obtained depth maps and shadow
cues of our model of both real and synthetic objects. The
depth map and shadow cues match well with our renderings
and the ground truth. Our forward-deferred optimization
strategy provides us with high-quality geometries, and
together with reasonable shadow information, our model
predicts close results to the reference.

In Table 3, we compare our neural appearance model
to the vanilla 3DGS with SHs. We run both methods on
datasets rendered with environment lighting and compare
the NVS quality. Since the shadow cue and depth
refinement MLP are disabled in our method, we only
run forward shading for our method. Overall, our neural
radiance representation provides more capacity and power
in various scenes.

In Fig. 10, we move the light source towards and away
from the object, showing the different lighting effects.
Thanks to the shadow cue, our model shows robustness
under different light conditions and can produce reasonable
light effects.

In Fig. 14, we show the relighting results of RNG under
moving point lights. Each column in the figure shows
a different light direction. Our model can render scenes
under novel lights with realistic appearance and high-
quality details, and can properly model the self-shadowing
effects. We suggest the reader refer to the supplementary
video for more validation.

7. Additional discussion
The choice in hybrid optimization. To improve the
shadow quality and avoid blurry artifacts, we suggest a
deferred shading process, regularizing the appearance of
shadows in the image space. As shown in Fig. 11,
the appearance of shadows is not obtained by blending
Gaussians, but directly decided in the image space, avoiding
the artifacts brought by the blending operation. However,
according to our observation, forward shading produces
better geometry, while deferred shading leads to outliers and
floaters. We show such observations in Fig. 12. Therefore,

RenderingShadow cueDepth map Reference

Figure 9. The visualization of depth maps and shadow cue maps of
our model for different objects. The two-stage hybrid optimization
strategy provides clear and accurate geometries, and the shadow
cue also correctly reflects the visibility information.

Far Close

Shadow cue

Rendering

Rendering

Shadow cue

Figure 10. The renderings and visualization of shadow cues when
moving the point light towards and away in the scene. The shadow
cues correctly reflect the movement of the light source, and our
model produces plausible renderings.
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Figure 11. The difference in producing shadows between forward
shading and deferred shading. For comparison, alpha blending
usually leads to wrong and blurry shadows, while deferred shading
provides more capability and flexibility to produce plausible colors
for the blended image space features.

we suggest a two-stage hybrid optimization strategy in the
end, preserving both the geometry and shadow qualities.

Network sizes. In Fig. 13, we show the prediction
accuracy with varying sizes of the neural Gaussian decoder.
We use FURBALL for example, since this scene includes
both complex appearance and shadows. All metrics
are normalized so that higher values indicate better
performance for ease of comparison. The variants are
tagged by the number of hidden units and hidden layers,
and our choice is (256, 4). Our choice yields the best
results among all variants, balancing between quality and
computational complexity.

Stage 1: deferred shading vs. forward shading

Reference
Defered shading

(depth map)
Forward shading

(depth map)

Stage 2: deferred shading vs. forward shading

ReferenceDefered shadingForward shading

Figure 12. The depth/shadow cue visualization and rendering
comparison between forward and deferred shading. Forward
shading produces better geometry, while deferred shading
produces better shadows.

(128, 2) (128, 4) (128, 6) (256, 2) (256,	4) (256, 6) Network	
size

PSNR
SSIM
LPIPS

Normalized
metrics

(higher-better)

26.7699
0.9122
0.0560

26.8008
0.9079
0.0521

26.8888
0.9101
0.0544

27.3449
0.9211
0.0481

27.6572
0.9258
0.0448

27.6171
0.9240
0.0442

Figure 13. The comparison of variants with different network
sizes. We test on FURBALL dataset. All metrics are normalized
to be higher-better, and the best values of each metric are marked
as bold. Our chosen configuration (256, 4) achieves the balance
between quality and complexity.
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Figure 14. The relighting results of RNG. Each column shows a different point light direction. Our model can render scenes in novel views
and lights with realistic appearance with high-quality details, and can properly model the self-shadowing effects.

Table 3. NVS Comparison of our neural appearance model and the vanilla SH-based 3DGS under static environment lighting. We provide
(from left to right) PSNR(↑), SSIM (↑) and LPIPS (↓) for comparison, and the prevailing results are marked as bold. Our neural radiance
representation is more flexible and powerful than the SHs in terms of NVS quality. Note that in this case, the shadow cue and depth
refinement MLP are disabled in our method.

Scene Vanilla 3DGS Ours (forward shading only)

Armadillo 45.8581 | 0.9959 | 0.0023 49.2875 | 0.9976 | 0.0009
CupPlane 43.1947 | 0.9957 | 0.0021 47.3267 | 0.9974 | 0.0010
Ficus 36.9734 | 0.9937 | 0.0038 39.8921 | 0.9964 | 0.0019
Flowers 36.0157 | 0.9918 | 0.0049 37.2329 | 0.9941 | 0.0036
HairBlue 38.5114 | 0.9766 | 0.0197 39.5742 | 0.9811 | 0.0146
Hotdog 35.3799 | 0.9941 | 0.0047 42.6534 | 0.9972 | 0.0015
Lego 42.0764 | 0.9962 | 0.0021 44.9111 | 0.9981 | 0.0009

Average 39.7157 | 0.9920 | 0.0057 42.9826 | 0.9946 | 0.0035
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