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To efficiently simulate the appearance of layered materials, we
propose a compact latent representation for layered materials and a
neural network that performs layering operation in this latent space.
In the main contents of this paper, we show that our evaluation
network can produce better results in considerably shorter time,
compared to previous work. In this supplementary material, we
introduce show some other operations that can be performed on
it, including interpolation, mipmapping and importance sampling,
and then show the results of them.

In Sec. 1.1, we introduce the interpolation and mipmapping of
our latent representation. In Sec. 1.2, we show the method to per-
form importance sampling on our latent representation evaluation.
Finally, we show the results of above in Sec. 2, together with some
extra quality validation for the representation network.

1 METHODOLOGIES
In this section, we introduce some other operations that work prop-
erly in our proposed latent space, including interpolation, mipmap-
ping and importance sampling. These operations are key to our
purpose to edit and render layered BRDFs efficiently.

1.1 Latent space interpolation and mipmapping
By interpolating two or more given BRDFs, a new BRDF can be
obtained, showing a natural transition effect between the input ma-
terials. We interpolate the BRDFs by performing the interpolation
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of the latent vectors of two input BRDFs. Further, we extend the
BRDF interpolation operation to level-of-detail rendering. Recall
that we use a multi-channel texture to define SVBRDFs, where each
texel is a latent vector instead of an RGB/RGBA value. We build
a mipmap of our latent texture as a preprocessing, then we use
standard trilinear interpolation to query the mipmap at appropri-
ate levels during rendering, which successfully avoids the aliasing
even at a low sampling rate (1 spp). During rendering, we compute
the pixel’s footprint for each shading point, and then query the
mipmapped latent texture with trilinear interpolation, using the
footprint size to find a proper level in the mipmap.

1.2 Importance sampling network
Importance sampling is a critical operation for including a BRDF in
a practical path tracing system. Specifically, for a given incoming
direction, we want to choose an outgoing direction with a pdf
roughly proportional to the outgoing BRDF lobe as a function on
the hemisphere; we also need to be able to evaluate the sampling
pdf for a given direction. To introduce a sampling operation for
Neural BRDFs represented in our latent space, our approach is to
use an analytic proxy distribution to mimic the actual BRDF lobe.

Generally, we use a weighted sum of a Gaussian lobe and a
Lambertian lobe to fit any pdf, and we train a small network to
predict the parameters of our pdf proxy directly from latent codes.
Our pdf proxy is defined as

pdf(𝝎𝑖 ,𝝎𝑜 ) = (1 −𝑤)𝐺𝜎 (ℎ𝑥 , ℎ𝑦) +𝑤𝐿(𝝎𝑜 ) (1)

where (ℎ𝑥 , ℎ𝑦) represents the projected half vector (its 𝑧-component
is dropped), and𝐺𝜎 is a Gaussian function with standard deviation
𝜎 , normalized on the projected hemisphere. 𝐿 is the Lambertian pdf
on the outgoing hemisphere (i.e., cos\𝑜/𝜋 ), where \𝑜 is the angle
between the outgoing direction 𝜔𝑜 and the macro surface normal.

We implement the importance sampling network and use it in
the rendering as follows:

Network design. Our sampling network is a simple four-layer
MLP (with 128, 512, 128 and 32 hidden units individually) with
ReLU layers as activation. Generally, it takes any BRDF latent vec-
tor and an incoming direction as input, and outputs the sampling
parameters 𝜎 and𝑤 of this BRDF. In practice, for each latent vector,
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we uniformly generate 40 × 40 different incoming directions and
predict the corresponding parameters via this network, then we
take the averaged pdf parameters predicted by the network from
these individual incoming directions.

Data preparation. To train this network, we define the concept of
a generalized normal distribution function (GNDF) of the BRDF, and
match our predicted pdf proxy with it. The name of GNDF is chosen
because for a microfacet BRDF, its GNDF has a similar (though not
identical) shape to its NDF. The GNDF is the normalized average
of the BRDF, in half-angle space, over all incoming directions 𝜔𝑖 ;
it is thus a 2D function of the half-vector. In practice, we estimate
the GNDF by uniformly sampling 40 × 40 incoming vectors on
the upper hemisphere and averaging the resulting 2D BRDF lobes
over half-angle space. Totally, we randomly choose 3, 000 two-layer
BRDFs from the dataset that we used to train the representation and
layering networks and another 300 two-layer BRDFs for validation.
We first project them into the latent space and then we compute
the ground-truth GNDFs.

Training. We train the importance sampling network by mini-
mizing the difference between our pdf proxy (Equation 1) and the
GNDF, in the following sense. To achieve this, we sample 40 × 40
points on the ground-truth pdf and our proxy pdf (Equation 1), and
then minimize their difference by the Kullback-Leibler divergence
(KLD) loss. The KLD loss is defined as

𝐾𝐿𝐷𝐿𝑜𝑠𝑠 =
1
𝑀

∑︁
𝑀

(
S(𝑓 gt) (logS(𝑓 gt) − logS(𝑓 pred))

)
, (2)

where S denotes the softmax function and𝑀 denotes the sample
count on a distribution. We start at a learning rate of 3 × 10−5 and
shrink it by 0.7 for every 3 epochs. We trained this network for
10 epochs in total, which costs less than 1 hour on an RTX 2080Ti
video card.

Integration into the rendering framework. Our neural based im-
portance sampling strategy works well with modern rendering
framework. For any BRDF, we need to precompute the param-
eters of our proxy (Equation 1) in advance. In rendering, when
we sample a BRDF according to our proxy, we firstly generate a
random number to choose between the Lambertian and the Gauss-
ian components, with the probability of diffuse ratio𝑤 . Then we
importance-sample the chosen component to obtain the outgoing
direction 𝜔𝑜 (in case of the Gaussian lobe, this is done by first sam-
pling the half vector ℎ and transforming it into outgoing direction).
We finally calculate the pdf value for the chosen outgoing direction;
this uses the Jacobian term of the half-angle transform, as detailed
by Walter et al. [2007]. We validate the results of our sampling
methods in Figures 4 and 5.

Note again that by definition, our pdf proxy only depends on
𝜎 and 𝑤 . Hence, even though the importance sampling takes an
incoming direction as input, the pdf proxy parameters are indepen-
dent of it, and can be precomputed only once using our sampling
network for a given BRDF before rendering. Therefore, our impor-
tance sampling is very fast, because no network inference is be
performed on the fly.

2 RESULTS
In this section, we firstly show some extra results and comparisons
about our latent representation evaluation, both on analytic BRDFs
and some measured BRDFs/BTFs. Then, we show the results of the
interpolation and mipmapping of our latent representation. At last,
we give some rendering comparison to show that our importance
sampling strategy works as expected.

2.1 Interpolation and mipmapping
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Figure 1: Comparison between our latent space interpolation
and linear interpolation (blending/mixture of BRDFs).

Figure 1 shows a visualization of our interpolation, compared
to naive linear interpolation of the BRDF values themselves. Our
latent space interpolation gives more natural results. For example,
during the interpolation between two BRDFs with low roughness
and high roughness, we naturally expect one lobe with intermediate
roughness, rather than a mixture of both.

Without a Mipmap With a Mipmap

Figure 2: Results using our method without and with latent
texture mipmapping, both rendered at 1 spp.

In Figure 2, we use a mipmap which is generated from the multi-
channel latent BRDF texture as a precomputation, and then it is
queried on the fly in the standard way, using the appropriate level
with trilinear interpolation. The mipmap reduces aliasing even with
very low sampling rates.

2.2 Sampling network
In Figure 3, we compare the pdf approximation among our method,
Lambertian sampling and GGX sampling with the generalized NDF
reference. From the curves, we can see that our pdf proxy is able
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Figure 3: Comparison of different pdf approximation strate-
gies. (Top row) Visualization of the normalized NDFs pre-
dicted by different methods for importance sampling. (Bot-
tom row) Visualization of 1D curves showing the pdf values,
extracted horizontally through the center of the correspond-
ing NDFs. Our pdf proxy produces the closest results to the
generalized NDF reference, compared to those by Lambertian
sampling or GGX sampling.

OursLambertian BRDF GGX BRDF 

Figure 4: Comparison among three sampling strategies. Left:
sampling the outgoing Lambertian lobe. Middle: sampling
according to theGGX lobewith parameters obtained from the
top layer. Right: our method, sampling two lobes predicted
by our sampling network. All results are produced using
BRDF sampling only, with 256 spp. Our method has the least
variance.

to predict pdfs that are suitable to sample both specular BRDFs
and diffuse BRDFs, while pdfs from Lambertian sampling and GGX
sampling are far away from the reference.

In Figure 4, we compare the rendered results using our sampling
network against sampling parametric lobes like Lambertian lobes or
GGX, with equal number of samples per pixel. Ourmethod produces
the best results. Also note that, since our fitted GNDF is independent
of the incoming direction, and only dependent on the underlying
BRDF, we can precompute and store the fits as a preprocessing. In
this way, we avoid the expensive inference of the sampling network
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Figure 5: Our method can be naturally applied in the MIS
framework. We compare between light sampling only, BRDF
sampling only and MIS under two different lighting configu-
rations (large light sources vs. a small light source). In both
cases, MIS produces the best results, as expected.

when drawing samples at rendering time. Therefore, our sampling
method is as efficient as sampling an analytic BRDF lobe.

Having enabled BRDF sampling, our method automatically en-
ables MIS. In Figure 5, we compare the results rendered with light
sampling only, BRDF sampling only, and MIS combining light sam-
pling and BRDF sampling. As expected, MIS further improves the
sampling quality.

2.3 Extra quality validation for the
representation network
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Figure 6: Our method is able to represent both rough and
smooth BRDFs from the MERL dataset [Matusik 2003]. The
reference is rendered using interpolated BRDF queries from
the dataset directly.

Our representation network can produce fairly close results
to the reference in rendering, and outperforms many previous
methods. In Figure 10, we compare our representation network
against Rainer et al. [2020], Sztrajman et al. [2021] and Guo et
al. [2018] (reference) on varying materials. For their results, we use
the pretrained model provided by Rainer et al. [2020] and train the
model for Sztrajman et al. [2021] using their released code. Rainer et
al. [2020] cannot handle high-frequency materials well, and suffers
from visible artifacts.
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Ours Reference Rainer et al. [2020]

Figure 7: Comparison of the representation ability on a
measured SVBRDF/BTF using our method (left), Rainer et
al. [2020] (right) and the reference. The BTF data is from
the UBO2014 BTF dataset [Weinmann et al. 2014]. While the
global appearance is good using both methods, our method
produces better grazing-angle result than Rainer et al. [2020].
All insets are with +2.8 exposure adjustment.
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Figure 8: Rendering results by exchanging the incoming and
outgoing directions and their difference. Our network has
already preserved reciprocity well without imposing explicit
regulation on it.

Although Sztrajman et al. [2021] produces visually similar results
to ours, their method has 6× more storage cost than our method
(even when using the dimensionality reduction), which makes it
less practical for SVBRDFs. Even though Sztrajman et al. [2021]
can produce lower error in some cases (rows 2–4), there are still
obvious color differences from the reference.

Our representation network is suitable not only for analytic
BRDF data, but can generalize to measured BRDFs, such as those
from the MERL dataset [Matusik 2003]. In Figure 6, we show the
rendering results by our network on MERL dataset [Matusik 2003].
We also show that our representation network is able to represent
SVBRDFs/BTFs in Figure 7 (note again that Sztrajman et al. [2021]
would be difficult to apply for this purpose).

Our network does not force reciprocity during training. How-
ever, since our training data is symmetrically sampled by both the
incoming and outgoing directions on the projected hemisphere,
the reciprocity is naturally preserved in our network. In Figure 8,
we show the rendering results by exchanging the incoming and
outgoing directions. The histogram of difference shows that our
network can preserve reciprocity reasonably well.

2.4 Tradeoff between network size and
representation accuracy

Our representation network, which consists of several repeated
MLP blocks, has the generalized ability to represent a large range
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Figure 9: The time cost and accuracy comparison among three
different network settings (4, 8 and 16 blocks) on both the
validation dataset and a Matpreview test scene (not shown in
this figure). Our current choice (16 blocks, marked in green)
is powerful enough to represent some difficult BRDFs, while
smaller networks struggle to show the highlight precisely.

of common BRDFs. In Figure 9, we show the tradeoff between the
network size and the representation accuracy. We compare the
outgoing radiance visualization, time cost, validation error and test
scene MSE among our current setting and two smaller networks.
From our experiments, we conclude that smaller networks bring
higher computational efficiency, but at the cost of losing representa-
tion accuracy. The smaller networks may also produce wrong color
in the highlights of specular BRDFs, and have higher error in both
the validation dataset and the test scene. The results show that our
current design choice is necessary to preserve the appearances of
complex BRDFs, with a reasonable computational overhead.
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