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Fig. 1. We present a lightweight object-capturing pipeline to reduce the workload and standardize the acquisition procedure. We use a consumer turntable
to carry the object and a tripod to hold the camera (left), automatically capturing dense samples from various views and lighting conditions. This way, we
easily obtain hundreds of high-quality captures within 3 minutes. We develop a conditional neural radiance representation, achieving high-quality novel view
synthesis (middle). With this representation, we can further synthesize results under novel views and light rotations (right).

Novel view synthesis (NVS) from multiple captured photos of an object is
a widely studied problem. Achieving high quality typically requires dense
sampling of input views, which can lead to frustrating and tedious manual
labor. Manually positioning cameras to maintain an optimal desired distri-
bution can be difficult for humans, and if a good distribution is found, it is
not easy to replicate. Additionally, the captured data can suffer from motion
blur and defocus due to human error. In this paper, we present a lightweight
object capture pipeline to reduce the manual workload and standardize the
acquisition setup. We use a consumer turntable to carry the object and a
tripod to hold the camera. As the turntable rotates, we automatically capture
dense samples from various views and lighting conditions; we can repeat
this for several camera positions. This way, we can easily capture hundreds
of valid images in several minutes without hands-on effort. However, in
the object reference frame, the light conditions vary; this is harmful to a
standard NVS method like 3D Gaussian splatting (3DGS) which assumes
fixed lighting. We design a neural radiance representation conditioned on
light rotations, which addresses this issue and allows relightability as an ad-
ditional benefit. We demonstrate our pipeline using 3DGS as the underlying
framework, achieving competitive quality compared to previous methods
with exhaustive acquisition and showcasing its potential for relighting and
harmonization tasks.

†Corresponding authors. Email: csjyang@njust.edu.cn.
†Corresponding authors. Email: beibei.wang@nju.edu.cn.
Authors’ addresses: Jiahui Fan, Nanjing University of Science and Technology,
China, fjh@njust.edu.cn; Fujun Luan, Adobe Research, USA, fluan@adobe.com; Jian
Yang† , Nanjing University of Science and Technology, China, csjyang@njust.edu.cn;
Miloš Hašan, Adobe Research, USA, milos.hasan@gmail.com; Beibei Wang† , Nanjing
University, China, beibei.wang@njust.edu.cn.

1 INTRODUCTION
Creating realistic 3D digital assets from real-world objects is a
long-standing challenge of computer graphics, with applications
to e-commerce, entertainment, digital heritage and more. A typical
pipeline captures multiple views of an object under fixed lighting
and transforms the captured images into a 3D digital asset, which
allows novel view synthesis (NVS) or in some cases, relighting.
Neural radiance fields (NeRF) [Mildenhall et al. 2021] or 3D Gaussian
splatting (3DGS) [Kerbl et al. 2023] can be used for this purpose, but
high-quality photograph capture still requires careful manual labor
and time, asthese methods require fairly dense views (typically hun-
dreds). Handheld camera videos are faster to capture but frequently
suffer from motion blur and defocus.

Images can also be captured with specialized devices [Kang et al.
2023; Ma et al. 2021; Ye et al. 2024]; this can reduce the required
human labor and precision, but these devices are often not easily
accessible, limiting their applicability. In the case of hand-held cam-
eras, various lighting setups can be employed, including unknown
environment lighting [Wang et al. 2021; Zhang et al. 2020], or a
point light that is collocated with the camera [Bi et al. 2020a,b,c], or
separate from the camera [Bi et al. 2024a; Gao et al. 2020]. In all cases,
the camera is held by a human hand. The constraints on a reasonable
sampling of viewpoints may be obvious to researchers, but manually
positioning cameras to maintain the desired distribution can be
difficult for average users. Additionally, the quality of captured
data can suffer from issues like motion blur and defocus, as shown
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Fig. 2. Illustrations of some common problems in the ordinary hand-hold
capturing pipeline. The final NVS quality can suffer from the imperfectly
sampled distribution and blurry images.

in Fig. 2. Several works propose utilizing sparse views and cross-
scene feed-forward inference techniques [Charatan et al. 2024; Chen
et al. 2025]. However, the reconstructed quality necessarily degrades
without dense samples.

In this paper, we present a lightweight object capture pipeline
designed to reduce manual workload, standardize the acquisition
process andmake it repeatable, while also obtaining some relightabil-
ity as an additional benefit. We use a consumer turntable to carry the
object and a tripod to support the camera. As the turntable rotates,
we automatically capture dense samples from various views and
under different lighting conditions (i.e., rotating environment light
as observed from the object’s frame of reference). This way, we can
easily capture hundreds of valid images in several minutes without
hands-on effort, while minimizing issues with blur and defocus. The
captured images can be used in existing NVS frameworks (NeRF or
3DGS). However, the varying light conditions break the assumptions
of these techniques, and are harmful to the reconstruction quality.
Therefore, we design a radiance representation conditioned on light
rotations to bridge the gap.
We first discuss the insights behind our turntable design from a

theoretical perspective. Next, we demonstrate our pipeline using
3DGS as the underlying framework, achieving competitive quality
compared to previous methods with exhaustive acquisition, while
also showcasing potential for relighting and harmonization tasks.
To summarize, our main contributions include:

• a novel lightweight capture pipeline that uses a turntable
and tripod to minimize manual workload and standardize the
acquisition process,

• a rotation-conditioned radiance field representation tailored
for our capture pipeline and allowing relightability in the
form of lighting rotation, and

• a dataset consisting of glossy and furry objects captured and
reconstructed under different lighting configurations with
our pipeline, available for downstream research.

2 RELATED WORK
Novel view synthesis. Novel view synthesis (NVS) aims to generate

new images from view directions that were not originally observed.
Extensive research on 3D representations has been proposed to
enable realistic novel view rendering. Notably, NeRF [Mildenhall
et al. 2021], 3DGS [Kerbl et al. 2023] and their follow-ups have
garnered significant attention due to their powerful representation
capabilities.

NeRF models radiance using integrals over a ray passing through
a volume, and addresses view-dependent radiance using multilayer
perceptrons (MLPs) conditioned on the view ray direction; this
is also true in most follow-up methods [Chen et al. 2022; Müller
et al. 2022]. Enhanced anti-aliasing techniques [Barron et al. 2021,
2022, 2023; Zhang et al. 2020] and improved reflectance modeling
[Attal et al. 2023; Verbin et al. 2022] have further refined the quality
and performance of NeRF-based representations. 3DGS [Kerbl et al.
2023] employs anisotropic Gaussians to represent scenes, allowing
for great adaptivity to actual geometric content and enabling real-
time, highly detailed renderings. The view dependence of radiance is
represented using spherical harmonics, which is even more limited
than MLP-based view-dependence.

Inverse rendering and relighting. Based on these NVS frameworks,
some inverse rendering approaches [Bi et al. 2020a; Boss et al. 2021;
Jin et al. 2023; Liang et al. 2024; Liu et al. 2023; Yao et al. 2022; Zhang
et al. 2021] allow for the relighting with novel environment lights by
decomposing the light, material and geometry of the target object.
Gao et al. [2020] leverage a learned neural texture on a rough proxy
geometry to achieve relighting of objects. Mullia et al. [2024] propose
a novel representation that combines explicit geometrywith a neural
feature grid and an MLP decoder, achieving high-fidelity rendering
and relighting with good flexibility and integration. NRHints [Zeng
et al. 2023] maintains an implicit neural representation with both
SDF and NeRF and predicts radiance with shadow and highlight
hints, achieving high-quality relighting. With 3DGS as the frame-
work, some work [Bi et al. 2024b; Gao et al. 2023] also relight objects
with analytical appearance approximation or neural appearances.
These approaches decompose the illumination and materials from
the object, supporting arbitrary novel environments or point lights
with full relightability, but at the cost of introducing limited material
models and often baking lighting features into material properties.
Compared to these methods, we opt for a simpler way without
explicitly modeling the illumination, achieving partial relighting
with rotated or linearly combined environments.
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Fig. 3. Intuitively, varying view directions and light rotations can be thought of as a 2-dimensional space of variation. The typical NVS problem (left) can be
seen as sampling a single 1D “column” in this space. In our formulation (middle) and its planar projection (right), we use a turntable setup to easily obtain
samples along the “diagonal lines” in this two-variable sample space. We capture multiple circles as shown in the right sub-figure, and each circle makes up an
orbit of cameras, leading to a continuous and uniform sampling of viewpoints. We fit a manifold to these samples, enabling us to render novel views as well as
light rotations; as a consequence, we can finally solve the NVS problem in a specific 1D slice of this manifold.

Camera pose calibration. These above techniques rely on posed
images to densely reconstruct 3D scenes, with the quality of the
input images significantly influencing the final rendering results.
Structure from Motion (SfM) methods [Hartley and Zisserman 2003;
Mur-Artal et al. 2015; Schonberger and Frahm 2016; Taketomi et al.
2017], particularly COLMAP [Schönberger and Frahm 2016], are
commonly employed to calibrate camera poses and provide initializa-
tion for point-based techniques. Although the quality of input data
is typically assumed to be sufficient for COLMAP to succeed, this
assumption is frequently invalid. Consequently, standardizing the
data acquisition process and minimizing human error is beneficial
to ensure robust and reliable performance in NVS applications.

3 OUR METHOD
To create a 3D asset from a real-world object for novel view synthesis,
a common approach is to capture hundreds of images by moving
the camera around the object under a static light condition and
then reconstruct the radiance field with NeRF or 3DGS. The entire
pipeline can be formulated as follows:

𝐿 = G(Vs, 𝐼0), (1)

where 𝐿 represents the radiance field, G denotes a reconstruction
operator, which can be either NeRF or 3DGS. Vs is a set of camera
views parameterized by the camera intrinsics and extrinsics. 𝐼0 is
an arbitrary static lighting (illumination) setting (e.g., unknown
environment) under which the images are captured.
To ensure high-quality reconstruction, it is necessary to have a

dense set of samples, typically hundreds of camera views, leading to
manual labor and high possibility of human error. Can we free our
hands while maintaining high-quality reconstruction? To answer
this challenge, we introduce a novel capture pipeline, presented
below.

3.1 Capturing with a turntable
In addition to moving the camera, we can also move or rotate the
object itself. A simple yet effective solution to this issue is to use a
turntable to hold the object, allowing it to rotate automatically. We
can position the camera on a tripod in a small number of locations,
to easily capture hundreds of images.
Suppose that the camera is placed at 𝑀 different locations. For

each camera location, a sequence of images corresponding to a full
turntable rotation forms a circle of 𝑁 camera positions in the object
frame. Unlike the typical capture pipeline, the images are captured
under different light conditions when thinking in the object frame
of reference: the same lighting environment is rotated differently
with respect to the object. This leads to our conditional radiance
field reconstruction formulation:

𝐿 = G(V, I), (2)
{V} = {V𝑖 |𝑖 = 0, 1, ..., 𝑀}, (3)
{I} = {I𝑗 | 𝑗 = 0, 1, ..., 𝑁 }, (4)

where V consists of samples from 𝑀 circles captured by placing
the camera around the turntable at different elevation and azimuth
angles. Here each V𝑖 is a set of views from one circle, and I is a
set of lighting rotations rather than a static lighting (𝐼0 in Eqn. (1)).
We choose 𝑁 rotations (I𝑗 ) from each circle, resulting in a total of
𝑀 × 𝑁 samples.

With this setup, we can easily capture hundreds of images with
minimum human labor. The remaining question is how to recon-
struct the conditional radiance field with these captured images.

3.2 Radiance field reconstruction with varying lighting
conditions

The original formulation for radiance field reconstruction, as pre-
sented in Eqn. (1), essentially operates as a one-variable regression
problem, predicting radiance values from different viewpoints. In
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contrast, our conditional radiance field reconstruction approach
incorporates a rotating light environment (in object frame), making
it a regression problem involving two variables. The key insight
behind our formulation is to construct a field conditioned on the
two-variable sample space and interpret the NVS problem as a one-
dimensional slice of this field, as illustrated in Fig. 3.

We use 3DGS as our underlying 3D representation, though NeRF
formulations could be used with small modifications as well. In stan-
dard 3DGS, radiance is represented using spherical harmonics (SH)
basis functions. While SH vectors are a compact way to represent
angular distributions, there is no option to make them conditional
on varying light conditions. Instead, we replace per-Gaussian SH
representation with a neural network conditioned on light rotations
(in addition to view directions) and build the manifold in a neural
latent space.

Specifically, each Gaussian has an appearance latent feature vec-
tor representing the observed color from given views and light
rotations. This appearance latent vector is interpreted by an MLP
to decode the conditional radiance field. The color per Gaussian is
computed as:

𝑐 = MLP(𝑥 |𝑣, 𝜃 ), (5)

where 𝑥 is the latent vector stored in each Gaussian point, 𝑣 is the
view direction (a normalized 3D direction), and 𝜃 is the azimuthal
rotation angle. Specifically, the MLP is 128-channel with 2 hidden
layers, using a level-2 frequency encoding for the input view di-
rections and light rotations. The latent vectors are 8-dimensional.
We evaluate the network before splatting the Gaussians, and the
final pixel colors are computed using standard 3DGS differentiable
rasterization.

3.3 Applications of our capture pipeline
Our capture pipeline can be applied to various scenarios. Here, we
outline several of these applications.

NVS and relighting with the neural radiance representation. One
obvious application of our pipeline is for NVS, as stated in the
previous section, by computing the radiance for each Gaussian
using its latent vectors and performing the alpha-blending. Addi-
tionally, since our neural presentation is defined by all different
light rotations, it naturally facilitates relighting under all rotating
light conditions.

NVS with a distilled SH representation. Besides using the neural
representation directly, it can be distilled into other representations
(e.g., SHs) by fixing a light rotation angle. The distilled represen-
tation allows novel view synthesis, while being compatible with
existing 3DGS-based applications.

Relighting under novel light conditions . Since our neural represen-
tation encodes the radiance field with multiple light conditions, we
can relight the object by linearly combining different light rotations
(e.g., front-lit and back-lit ones), achieving a novel light condition.
Furthermore, if the original environment lighting is known, it is
possible to approximately fit a target lighting using the known
rotations, in order to achieve even more complex relighting tasks.

An alternative capturing setup with a studio box

Illutration of extra sparse static captures

+
Rotation of the turntable No rotations

Fig. 4. The illustration of some alternative versions of our datasets. The users
can easily extend the setup of our pipeline with their desired extensions
without obviously increasing the workload and time cost. We showcase and
discuss the extra sparse static captures setup in our supplementary.

4 IMPLEMENTATION DETAILS
Turntable capture dataset. We have constructed a dataset of turn-

table captures under various indoor lighting conditions. The dataset
consists of 17 real-world objects with diffuse, furry, or glossy ap-
pearances. Each object is sampled using 𝑀 = 8 turntable videos
featuring different camera elevations and azimuths, and we select
𝑁 = 60 frames from each video, resulting in a total of 480 images for
each training set. Another 60 frames from a video at a novel view is
used as the testing set. A typical capture process takes 3 minutes.
Our pipeline is flexible and allows for the use of controlled pho-

tographic studio lighting or additional camera samples. We offer
a version of our dataset captured under a studio light box that
delivers controllable soft lighting. Such extensions can enhance the
result quality and repeatability, while maintaining the efficiency
and simplicity of our pipeline. We describe the studio box variant
in Fig. 4 and validate it in Sec. 5. We also provide another variation
with 20 extra views captured under static lighting, and we discuss
it in our supplementary.

Capturing details and data preparation. We show a snapshot of
our capturing environment in Fig 12. We use the 48 mm video
camera from an iPhone 15 Pro Max and crop the images to get a
resolution of 1440×1440 pixels. During capturing, we position the
camera approximately every 0.25𝜋 radians around the object to
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create 8 video sequences, while uniformly varying elevation angles.
For the studio box case, we only sample viewpoints from the front
side of the box, since the object is blocked from other sides.

After capturing, we compute optical flow to identify the start and
end points of each rotation cycle (though of course we could also
manually stop and restart the videos). We randomly select 60 frames
from each cycle. The turntable rotates at a fixed angular velocity,
so we divide 2𝜋 by the total number of frames to determine the
rotation angle at each selected timestamp. All images aremasked and
the background is automatically removed using SAM2 [Ravi et al.
2024]. We then conduct calibration using COLMAP [Schönberger
and Frahm 2016].

Optimization. During optimization, we back-propagate the gradi-
ent to the MLP weights, feature vectors and Gaussian parameters.
The network weights and the latent vectors are jointly updated
and optimized to fit the appearance under the rotating light con-
ditions with 𝐿1 loss function and the structural similarity index
(SSIM) [Wang et al. 2004].

5 RESULTS

5.1 Experiment setup
We validate our pipeline on our captured and synthetic datasets. We
run all experiments on an Ubuntu 22.04 LTS distribution powered by
Windows Subsystem Linux 2. All renderings are done with 800×800
resolution, and training our pipeline typically takes about 15minutes
on an RTX4090 GPU. We evaluate the peak signal-to-noise ratio
(PSNR), SSIM, and perceptual similarity (LPIPS) [Zhang et al. 2018]
values to compare both the pixel-wise accuracy and global degree
of realism.

5.2 Datasets and baseline
We run experiments on our captured read-world datasets and syn-
thesized datasets. As stated in Sec. 4, we provide two versions of
our dataset with different capturing setups: (a) using the turntable
only (called the default dataset) and (b) using an additional studio
box for soft lighting (called the studio box dataset). We evaluate the
NVS and relighting qualities on both datasets in this section. Note
that in both datasets, each image is with different views and light
rotation angles. We build synthetic data with a simulated turntable
only to validate the NVS quality. In the synthetic dataset, all training
images are with light rotations but testing images, and we generate
ideally sampled fully static images for 3DGS to compare with.
We use 3DGS [Kerbl et al. 2023] as our baseline for comparison.

Since other advanced approaches [Liu et al. 2024; Meng et al. 2024;
Yu et al. 2024] that enhance 3DGS are orthogonal to our pipeline,
we did not perform comparisons with these methods.

5.3 Quality validation
To validate the effectiveness of our pipeline, we compare the ren-
dering quality between our conditional radiance representation
and 3DGS on default and studio box datasets, where quantitative
results are provided in Table 1 and the visual comparisons are
provided in Figs. 8 and 10. Generally, the studio box datasets give a
higher rendering quality, since the softened light makes it easier for
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Fig. 5. The NVS result with SHs distilled from our trained model. By a
simple distillation process, our conditional radiance representation can be
exported into a static radiance field at a specific light rotation angle for
simple NVS and easy cooperation with other applications.

Front-lit Back-lit Relighting

Combination

Combination

Rabbit

Alpaca

Fig. 6. Relighting the objects by linear combinations of light rotations with
RGB weights. Top: blue and purple light combined. Bottom: yellow and
green light combined.

both our method and 3DGS to represent the radiance. Our method
outperforms 3DGS on both datasets, showing ∼32 dB on the default
dataset and ∼37 dB on the studio box dataset.

Default dataset. In Fig. 8, we provide the visual comparison be-
tween our method and 3DGS across three scenes selected from the
default datasets. These scenes include typical complex fur and reflec-
tions. By comparison, we find that our method has a much higher
quality (about +5 dB) consistently. In particular, 3DGS exhibits an
overly dark appearance at grazing angles and obvious blurriness
on the furry surface as it cannot handle rotating light conditions.
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Table 1. The rendering quality of our neural radiance representation and 3DGS with novel views and light rotations on our captured datasets (both default
and studio box). The results are evaluated in PSNR (↑) , SSIM (↑) and LPIPS (↓) . The best/second-best results are colored in red / orange . The soft light
from the studio box generally provides higher qualities, while the capturing workload stays the same. Our neural radiance representation outperforms 3DGS
on both variants of datasets.

Scene
Default dataset (3 minutes) (Fig.8) Studio box dataset (3 minutes) (Fig.10)
Ours 3DGS Ours 3DGS

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Alpaca 33.7039 0.9894 0.0169 29.6081 0.9806 0.0323 34.0134 0.9896 0.0184 31.7581 0.9830 0.0344
Cat 30.9368 0.9835 0.0109 26.0663 0.9555 0.0356 40.8780 0.9938 0.0046 35.4237 0.9818 0.0133
China 34.2610 0.9897 0.0090 30.7809 0.9844 0.0146 39.6296 0.9956 0.0052 36.5625 0.9933 0.0084
Controller 30.4726 0.9761 0.0209 25.2222 0.9659 0.0345 35.4382 0.9920 0.0089 33.0897 0.9856 0.0180
Dinosaur 36.0936 0.9928 0.0065 32.5989 0.9883 0.0123 41.9424 0.9967 0.0045 38.4615 0.9934 0.0097
Dolphin 39.0878 0.9961 0.0048 34.1935 0.9924 0.0086 42.5473 0.9972 0.0041 40.2936 0.9953 0.0075
Jar 29.3733 0.9553 0.0484 23.6761 0.9101 0.1196 33.1215 0.9772 0.0193 28.8963 0.9415 0.0798
Monza 36.5302 0.9926 0.0054 29.6788 0.9844 0.0104 41.3471 0.9964 0.0034 38.6690 0.9926 0.0077
Panda 29.1212 0.9780 0.0288 25.7316 0.9628 0.0525 36.3338 0.9783 0.0112 32.5720 0.9614 0.0266
Pearl 38.0879 0.9917 0.0070 30.4644 0.9834 0.0140 41.4716 0.9960 0.0045 37.4667 0.9916 0.0105
Penguin 28.9595 0.9698 0.0290 23.9183 0.9453 0.0598 35.2508 0.9792 0.0194 33.0846 0.9571 0.0456
Pine 25.6992 0.9451 0.0421 21.7535 0.8820 0.0881 32.1439 0.9724 0.0184 28.0977 0.9354 0.0580
Rabbit 31.6668 0.9760 0.0200 29.4303 0.9592 0.0413 34.1400 0.9842 0.0191 30.5215 0.9648 0.0413
Rider 28.6987 0.9486 0.0345 25.3948 0.9275 0.0535 34.9932 0.9816 0.0190 32.7340 0.9640 0.0378
RiderSmall 37.5932 0.9924 0.0053 31.0377 0.9830 0.0115 41.9490 0.9961 0.0055 38.5647 0.9917 0.0105
Sparrow 29.7554 0.9720 0.0309 25.6735 0.9593 0.0531 31.9495 0.9585 0.0132 31.1654 0.9526 0.0260
Tuan 31.5752 0.9827 0.0234 23.9322 0.9693 0.0439 34.6477 0.8956 0.0087 25.7017 0.8694 0.0277

Average 32.4968 0.9785 0.0202 27.4832 0.9609 0.0403 37.1645 0.9812 0.0110 33.7096 0.9679 0.0272

Table 2. The comparison of NVS qualities on synthetic datasets. All results
are evaluated in PSNR (↑) and LPIPS (↓) , and best/second-best results are
marked in red / orange . Note that in this comparison, the testing set is
without any light rotations. Our method produces higher-quality results
from training images with rotating lights than 3DGS does with common
dataset setups (100 static images). Even with fairly sufficient ideally sampled
static samples, our results are still competitive with them.

Scene
Ours 3DGS 3DGS

(600 rotating) (100 static) (660 static)
PSNR LPIPS PSNR LPIPS PSNR LPIPS

Armadillo 35.760 0.025 35.949 0.036 36.588 0.035
Ficus 34.227 0.007 34.001 0.008 35.207 0.007
Flowers 31.920 0.020 30.237 0.037 31.288 0.033
Lego 33.507 0.026 32.137 0.045 32.957 0.041

Average 33.853 0.020 33.081 0.032 34.010 0.029

Although it can reconstruct good geometries, the radiance (espe-
cially the shadow effects) is incorrectly predicted. In contrast, our
method produces results that closely match the reference, thanks to
the conditional radiance representation.

Studio box dataset. We further compare the rendering quality
between our method and 3DGS on four scenes from the studio box
datasets, which offer high-quality photographic lighting with less
lighting variation. These scenes are chosen to cover several typical

37.298028.613123.6966

36.642128.067523.7731

Reference
Monza

M = 1 M	= 4 M = 8

PSNR

PSNR

Fig. 7. The effect of the number of circles (𝑀) in our pipeline. Given only one
fixed camera position, we only observe one “diagonal line” in the view-light
space, resulting in severe over-fitting. In practice, we choose𝑀 = 8 for our
real datasets.

effects, including high specular, detailed fur, etc. Our method still
surpasses 3DGS in all these scenarios, showing about 5 dB higher
PSNR on average. While the quality of 3DGS has also been improved
compared to the ones from the default datasets, it still suffers from
missing specular highlights (top left) and over-blurred appearance
(two scenes at the bottom), while our renderings preserve these
details and better match the ground truth.
We provide results from synthetic datasets using our capturing

pipeline but test with full static images (without any light rotations)
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to compare the NVS quality. In this comparison, 3DGS uses ideally
sampled fully static training images. We provide the rendering
comparisons in Fig. 9 and quantitative results in Table 2. Our neural
radiance representation achieves higher-quality renderings than
that from 3DGS with a common setup (100 static images) and is still
competitive with results of 3DGS from abundantly sampled static
views (660 static images). Note that in practice, even for 600 images
with rotating lights, we still need no more than 4 minutes to capture
them, while capturing 100 high-quality static images already costs
more than 3 minutes of difficult manual labor. In addition, our NVS
quality can be further improved with another variant of our datasets.
We describe and validate this in our supplementary.

5.4 More applications
Relighting with the neural representation. Since our method re-

constructs a two-dimensional manifold, considering both the light
rotations and different views, it naturally supports relighting with
the same light but with different rotations. In Fig. 11, we showcase
the rendered result under different light rotations. We use the Rabbit
scene from the default dataset as an example. With varying lighting
conditions, our rendered results exhibit overall reasonable lighting
outcomes. Since it is difficult to achieve rotating light with a fixed
camera in practice, we don’t provide ground truths for comparison
in this figure.

NVS with distilled SH representation. After selecting a lighting
angle, our neural representation can be easily distilled into an SH
representation. This way, it can fit existing 3DGS-based applications.
In Fig. 5, we show the NVS results rendered with the distilled SHs
under three different lighting rotations. The distilled SHs achieve
close qualities to the results from our neural radiance representation,
producing faithful NVS compared to the ground truth at the specified
rotation angles. Note that we obtain all the results from only one
training. A typical distillation process can finish within 3 minutes.

Relighting under novel light conditions . Our neural representation
encodes the radiance field with multiple light conditions, which
allows us to linearly combine different light rotations (e.g., front-lit
and back-lit ones), achieving a fused light condition. In Fig. 6, we
demonstrate the relighting results by combining the front-lit and
the back-lit scenarios, with different lighting colors. The way, our
method enables the creation of rich and diverse assets.

5.5 Ablation study
In our capture pipeline, we need to position the camera on a tripod
in several locations, where this location number𝑀 is a crucial factor.
To validate its influence, we provide an ablation study in Fig. 7 by
setting different values of𝑀 with the default setup. For fairness, we
keep the same total number of captures across the different setups
(1, 4, and 8 locations). By comparison, increasing the number of
locations improves the rendering quality. The main reason behind
this phenomenon is that sparse locations lead to uneven sampling on
the 2D manifold, which can lead to overfitting during optimization
and hurting the rendering quality.

5.6 Discussion and limitations
More flexible relighting. Our capture pipeline enables relighting

with different light rotations or a linear combination of various light-
ing conditions. However, our method still cannot fully or flexibly
support relighting in entirely new environments. We will address
this in future work.

Data processing. Our capture pipeline relies on COLMAP [Schön-
berger and Frahm 2016] to calibrate our camera poses. However,
the light condition changes during the capturing, which raises the
difficulty of calibrating. While the current background removal can
alleviate this issue, it might occasionally fail due to the capability of
the large model. Therefore, either a COLMAP-free calibration or a
more accurate background removal approach will further improve
our capture quality.

Alternative NVS frameworks. We choose the basic 3DGS frame-
work to validate the effectiveness of our capturing pipeline. How-
ever, there are still many advanced approaches that provide even
higher NVS qualities. Their work is orthogonal to ours and our
pipeline is flexible enough to fit into most of such advanced ap-
proaches.

6 CONCLUSION
In this paper, we have presented Free Your Hands, a lightweight
object-capturing pipeline to reduce manual workload, standardize
the acquisition process, and ensure repeatability. The proposed
capture pipeline consists of a simple setup: a consumer turntable
to hold the target object and a tripod to hold the camera. As the
turntable rotates, we can easily capture hundreds of valid images in
several minutes without hands-on effort. Then, we design a neural
radiance representation conditioned on light rotations tailored for
the captured images. Our capture pipeline can be integrated into
both NeRF or 3DGS-based frameworks. We have demonstrated
the effectiveness of our pipeline in the 3DGS-based framework
across various applications, including NVS and relighting under
different light rotations or combined lighting conditions, showing
competitive quality in NVS and reasonable relighting effects.
There are still many potential future research directions. One

promising avenue is to expand the neural radiance representation
into a fully relightable manifold. Additionally, improving the NVS
and relighting quality on some difficult types of objects, such as
reflective or transparent ones, is also an interesting and challenging
direction.
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Alpaca
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Penguin

Dataset:	default
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PSNR | SSIM | LPIPS35.3997	|	0.9809	|	0.0095

Fig. 8. Comparison of rendering results with novel views and light rotations by our neural radiance manifold prediction and 3DGS on default datasets. The
best results are marked as bold. 3DGS cannot handle the rotating light conditions, resulting in wrongly predicted shadow/light effects. In contrast, our
pipeline provides closer results to the reference.

36.648433.9192 PSNRLego37.130632.1584

Ours 
(600 rotating captures)

3DGS
(660	static	captures)

Reference 
(static)

3DGS
(100	static	captures)

36.6484 PSNRArmadillo36.2754

Fig. 9. The NVS comparison on synthetic datasets. Here 3DGS uses ideally sampled fully static training images. The best/second-best results are marked
as bold/italic. All testing images are also static (without any light rotations). Our neural radiance representation achieves high-quality renderings, and is
competitive with results of 3DGS from ideally sampled static views.
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Ours3DGS Reference
Dataset:	studio	box

40.2413	|	0.9959	|	0.0052 PSNR | SSIM | LPIPS

China
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40.4920	|	0.9943	|	0.0039 PSNR | SSIM | LPIPS

Cat
33.0872	|	0.9610	|	0.0124 PSNR | SSIM | LPIPS

Sparrow

Fig. 10. The rendering results with novel views and light rotations on the studio box datasets with high-quality photographic studio lights. The best results are
marked as bold. Both 3DGS and our method can achieve plausible renderings, while our quality is still higher.

Our
prediction

Light
rotation

Rabbit

Fig. 11. The rendering results of our model from a novel view and novel light rotations. Our method can effectively predict reasonable light transition when
light rotates, as our light-conditioned neural representation is learned based on samples from multiple light conditions.
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Turntable	+	Tripod	=	Free	HandsTurntable	+	Tripod	=	Free	Hands

RotatingRotating

CaptureCapture

Capturing	time:	3	mins

Snapshot of our capturing setup Our novel view synthesis Synthesizing novel light rotations

Fig. 12. We present a lightweight object-capturing pipeline to reduce the workload and standardize the acquisition procedure. We use a consumer turntable
to carry the object and a tripod to hold the camera (left), automatically capturing dense samples from various views and lighting conditions. This way, we
easily obtain hundreds of high-quality captures within 3 minutes. We develop a conditional neural radiance representation, achieving high-quality novel view
synthesis (middle). With this representation, we can further synthesize results under novel views and light rotations (right).

Novel view synthesis (NVS) from multiple captured photos of an object is
a widely studied problem. Achieving high quality typically requires dense
sampling of input views, which can lead to frustrating and tedious manual
labor. Manually positioning cameras to maintain an optimal desired distri-
bution can be difficult for humans, and if a good distribution is found, it is
not easy to replicate. Additionally, the captured data can suffer from motion
blur and defocus due to human error. In this paper, we present a lightweight
object capture pipeline to reduce the manual workload and standardize the
acquisition setup. We use a consumer turntable to carry the object and a
tripod to hold the camera. As the turntable rotates, we automatically capture
dense samples from various views and lighting conditions; we can repeat
this for several camera positions. This way, we can easily capture hundreds
of valid images in several minutes without hands-on effort. However, in
the object reference frame, the light conditions vary; this is harmful to a
standard NVS method like 3D Gaussian splatting (3DGS) which assumes
fixed lighting. We design a neural radiance representation conditioned on
light rotations, which addresses this issue and allows relightability as an ad-
ditional benefit. We demonstrate our pipeline using 3DGS as the underlying
framework, achieving competitive quality compared to previous methods
with exhaustive acquisition and showcasing its potential for relighting and
harmonization tasks.

†Corresponding authors. Email: csjyang@njust.edu.cn.
†Corresponding authors. Email: beibei.wang@nju.edu.cn.
Authors’ addresses: Jiahui Fan, Nanjing University of Science and Technology,
China, fjh@njust.edu.cn; Fujun Luan, Adobe Research, USA, fluan@adobe.com; Jian
Yang† , Nanjing University of Science and Technology, China, csjyang@njust.edu.cn;
Miloš Hašan, Adobe Research, USA, milos.hasan@gmail.com; Beibei Wang† , Nanjing
University, China, beibei.wang@njust.edu.cn.

In the main paper, we have proposed Free Your Hands, a lightweight
relightable object-capturing pipeline with a turntable, allowing for
NVS and relighting. We have also introduced a novel formulation of
NVS problems and provided two versions of datasets that contain 17
real-world objects. In this supplementary, we introduce and discuss
another variant of our proposed dataset with 20 extra sparse static
captures as input.
Our pipeline captures images under rotating light conditions

and achieves rendering with novel views and light rotations si-
multaneously. However, when focusing on NVS (without any light
rotations), we can further improve the qualities by adding a few extra
samples at the target fixed light rotation. Therefore, we also present
a variant of our dataset with 20 extra images captured under the
static environment light (called the +20 static dataset). Theoretically,
more extra static captures bring higher NVS quality at the target
light condition. In practice, to balance the time cost and quality, we
capture 20 extra static images.

We show the effect of these extra sparse static captures in Fig. 13,
and also provide the quantitative results on our +20 static datasets,
compared to the default ones in Table 3. Generally, The +20 static
datasets give similar qualities compared to default datasets on such
testing sets since the extra captures will not help the rendering with
novel light rotations, but only for the static NVS.

To validate the improvement in NVS, we also provide results on
synthetic datasets with static images as the testing set. We use +20
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Table 3. Rendering qualities with novel view and light rotation from our neural radiance representation on different datasets. The results are evaluated in
PSNR (↑) , SSIM (↑) and LPIPS (↓) . The best/second-best/third-best results are colored in red / yellow . Our neural radiance representation outperforms
3DGS on both variants of datasets.

Scene
Default dataset (3 minutes) (See the main paper) +20 static dataset (3.7 minutes) (Fig.13)

Ours 3DGS Ours 3DGS
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Alpaca 33.7039 0.9894 0.0169 29.6081 0.9806 0.0323 34.2296 0.9906 0.0161 29.1272 0.9802 0.0329
Cat 30.9368 0.9835 0.0109 26.0663 0.9555 0.0356 33.1386 0.9828 0.0114 26.0425 0.9535 0.0415
China 34.2610 0.9897 0.0090 30.7809 0.9844 0.0146 35.3399 0.9903 0.0095 30.3217 0.9835 0.0153
Controller 30.4726 0.9761 0.0209 25.2222 0.9659 0.0345 30.7255 0.9767 0.0206 24.5290 0.9648 0.0356
Dinosaur 36.0936 0.9928 0.0065 32.5989 0.9883 0.0123 36.3225 0.9930 0.0062 33.5739 0.9889 0.0125
Dolphin 39.0878 0.9961 0.0048 34.1935 0.9924 0.0086 39.1236 0.9959 0.0050 33.6032 0.9920 0.0091
Jar 29.3733 0.9553 0.0484 23.6761 0.9101 0.1196 29.8483 0.9484 0.0596 23.7533 0.9012 0.1390
Monza 36.5302 0.9926 0.0054 29.6788 0.9844 0.0104 36.5283 0.9928 0.0050 29.4366 0.9841 0.0101
Panda 29.1212 0.9780 0.0288 25.7316 0.9628 0.0525 28.6421 0.9778 0.0288 26.4826 0.9660 0.0517
Pearl 38.0879 0.9917 0.0070 30.4644 0.9834 0.0140 37.5966 0.9921 0.0066 30.5545 0.9839 0.0143
Penguin 28.9595 0.9698 0.0290 23.9183 0.9453 0.0598 29.5938 0.9699 0.0295 23.9765 0.9467 0.0600
Pine 25.6992 0.9451 0.0421 21.7535 0.8820 0.0881 29.2246 0.9504 0.0375 21.8756 0.8822 0.0922
Rabbit 31.6668 0.9760 0.0200 29.4303 0.9592 0.0413 32.1203 0.9823 0.0198 29.8564 0.9657 0.0409
Rider 28.6987 0.9486 0.0345 25.3948 0.9275 0.0535 28.5096 0.9498 0.0346 25.6186 0.9280 0.0538
RiderSmall 37.5932 0.9924 0.0053 31.0377 0.9830 0.0115 37.2683 0.9922 0.0056 31.0191 0.9817 0.0128
Sparrow 29.7554 0.9720 0.0309 25.6735 0.9593 0.0531 29.4498 0.9715 0.0316 25.7855 0.9596 0.0541
Tuan 31.5752 0.9827 0.0234 23.9322 0.9693 0.0439 31.3717 0.9827 0.0239 23.6291 0.9688 0.0447

Average 32.4968 0.9785 0.0202 27.4832 0.9609 0.0403 32.8843 0.9788 0.0206 27.5991 0.9606 0.0424

Table 4. The NVS qualities with different numbers of extra sparse static captures as input. All resutls are evaluated in PSNR (↑) , SSIM (↑) , and LPIPS (↓) , and
best/second-best/third-best results are marked in red / orange / yellow . Note that in this figure, the testing set is without any light rotations. By adding
sparse captures with the targeted light condition, the NVS quality of our pipeline can be further improved, even surpassing 3DGS with the ideal exhaustive
acquisition. However, we only need no more than 4 minutes in practice to obtain such a dataset, while it will take more than 20 minutes for a hand-held
camera to finish the ordinary capturing.

Scene Ours (600 rotating) Ours (+10 static) Ours (+30 static) 3DGS (100 static) 3DGS (660 static)
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Armadillo 35.760 0.968 0.025 36.812 0.971 0.023 38.175 0.974 0.021 35.949 0.963 0.036 36.588 0.965 0.035
Ficus 34.227 0.984 0.007 34.896 0.986 0.006 35.900 0.988 0.005 34.001 0.984 0.008 35.207 0.988 0.007
Flowers 31.920 0.976 0.020 32.434 0.978 0.019 32.657 0.979 0.019 30.237 0.963 0.037 31.288 0.970 0.033
Lego 33.507 0.959 0.026 34.077 0.963 0.024 35.398 0.971 0.019 32.137 0.951 0.045 32.957 0.958 0.041

Average 33.853 0.972 0.020 34.555 0.974 0.018 35.532 0.978 0.016 33.081 0.965 0.032 34.010 0.970 0.029

static for real-world datasets and use +10/30 static synthetic datasets
to demonstrate the effectiveness of extra static captures and show
the impact of the number of static captures. In practice, even for +30
static, we still only need about 1 minute extra work time (4 minutes
in total), while the hand-held camera can only capture about 120
valid static images in the same amount of time.

In Fig. 14, we show the impact of extra static captures in the
final NVS quality, and quantitative results are also provided in
Table 4. Our NVS result from rotating captures is closer to the
ground truth compared to a standard 3DGS capture (from 100
static images), and stays competitive with 3DGS using the ideal
exhaustive acquisition (660 static images). With extra static captures,

we can further improve our NVS quality, outperforming 3DGS
even with 660 static captures. Additionally provided static captures
significantly improve our NVS quality, since the network can focus
more on the specific 1D sample space than the global manifold. In
contrast, 3DGS only gets marginal improvement from extra captures.
We only demonstrate this on synthetic scenes, since the ideal high-
quality and reasonably sampled static captures for 3DGS are difficult
to collect in practice. Our method can significantly benefit from
sparse additional samples under the desired light condition without
much extra workload and time cost.
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Pine

Dinosaur

Rider

Ours (with default	dataset)
Dataset:	+20	static

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

PSNR | SSIM | LPIPS

Fig. 13. The rendering results with novel views and light rotations on +20 static datasets. The best/second-best results are marked as bold/italic. Compared to
the default setting, Our NVS quality can be further improved on such datasets, while 3DGS still has incorrect shadow effects.

Ours (600	rotating	captures)3DGS
(660	static	captures)

Reference 
(static)

36.6484 37.130633.9192 35.1410 PSNRLego

36.6484 37.1306 PSNRArmadillo

+10	static+0	static +30	static

37.1306

3DGS
(100	static captures)

Fig. 14. The ablation on the impact of extra sparse static captures. Our method can significantly benefit from sparse additional samples under the desired
light conditions, and still beat the quality of 3DGS, despite providing as many uniformly sampled ideal captures under a static light condition for them. Note
that in this figure, all references are with the static lighting (i.e., NVS without any light rotations).
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