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Figure 1: We present a neural biplane model for the representation, compression, and rendering of bidirectional texture
functions (BTFs). One key application of our model is a lightweight pipeline for BTF acquisition. In this scene, we showcase a
variety of BTFs, including those from the UBO2014 dataset [Weinmann et al. 2014], synthetic analytical BTFs, and real-world
materials that were captured using a cell phone with a collocated flash. Our model demonstrates efficient compression and
faithful rendering of BTFs, regardless of whether they were obtained through heavyweight or lightweight capture methods or
synthetic data. The insets for each material show the raw data and the visualization of our biplane representation.
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ABSTRACT
Bidirectional Texture Functions (BTFs) are able to represent com-

plex materials with greater generality than traditional analytical

models. This holds true for both measured real materials and syn-

thetic ones. Recent advancements in neural BTF representations

have significantly reduced storage costs, making them more practi-

cal for use in rendering. These representations typically combine

spatial feature (latent) textures with neural decoders that handle

angular dimensions per spatial location. However, these models

have yet to combine fast compression and inference, accuracy, and

generality. In this paper, we propose a biplane representation for

BTFs, which uses a feature texture in the half-vector domain as
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well as the spatial domain. This allows the learned representation

to encode high-frequency details in both the spatial and angular do-

mains. Our decoder is small yet general, meaning it is trained once

and fixed. Additionally, we optionally combine this representation

with a neural offset module for parallax and masking effects. Our

model can represent a broad range of BTFs and has fast compres-

sion and inference due to its lightweight architecture. Furthermore,

it enables a simple way to capture BTF data. By taking about 20 cell

phone photos with a collocated camera and flash, our model can

plausibly recover the entire BTF, despite never observing function

values with differing view and light directions. We demonstrate

the effectiveness of our model in the acquisition of many measured

materials, including challenging materials such as fabrics.

CCS CONCEPTS
• Computing methodologies → Reflectance modeling; Ray
tracing; Appearance and texture representations.

KEYWORDS
BTF, neural representation, BTF acquisition

ACM Reference Format:
Jiahui Fan, Beibei Wang, Miloš Hašan, Jian Yang, and Ling-Qi Yan. 2023.

Neural Biplane Representation for BTF Rendering and Acquisition. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Proceedings (SIGGRAPH ’23 Conference Proceedings), August 6–10,
2023, Los Angeles, CA, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3588432.3591505

1 INTRODUCTION
To produce vivid and realistic appearances in computer graphics,

high-quality materials are among the key requirements. Commonly

used material models include analytical models (typically based

on microfacet theory) as well as data-driven materials. A common

formalization of data-driven appearance is the bidirectional texture

function (BTF), which is a 6-dimensional function consisting of two

spatial dimensions and four angular dimensions (two each for the

incoming and outgoing light). BTFs can characterize a more general

appearance than analytical bidirectional reflectance distribution

functions (BRDFs), both for measured data and challenging syn-

thetic data. This is particularly true when reproducing non-local

effects such as parallax, self-shadowing, and interreflections caused

by complex heightfield or non-heightfield geometry (e.g., yarns and

fibers in fabrics).

Due to the high dimensionality of BTFs, using them in practical

rendering applications is not trivial. The simplest way is employing

discrete tables, leading to prohibitive storage costs, which have been

addressed through classical compression techniques such as (clus-

tered) PCA [Weinmann et al. 2014] and dictionary learning [Tong-

buasirilai et al. 2022]. In recent years, neural networks for represent-

ing BTFs have received attention. They mainly focus on efficient

compression [Rainer et al. 2019; Rainer et al. 2020; Takikawa et al.

2021] and efficient rendering with parallax effects [Kuznetsov et al.

2021], some also handle silhouette effects [Kuznetsov et al. 2022],

while others support material layering [Fan et al. 2022]. They have

greatly reduced the storage overhead, making high-dimensional

BTF data practically usable in rendering. However, none of these

methods offer a combination of high representation accuracy (es-

pecially for more specular materials), compressing and rendering

speed, and the compression ratio.

The acquisition of real BTFs is a challenge in itself. Exhaustive

BTF measurement [Dana et al. 1999] requires thousands of pho-

tographs under controlled viewing and lighting directions; this is

time-consuming and needs complex setups that have only been

built in a small number of labs. Some efforts have been made to

make the captured images sparser [Brok et al. 2017], but still, more

than ten cameras and hundreds of LEDs are required.

In this paper, we propose a novel neural representation for BTFs.

We notice that BTFs are simplified when parallax and normal map-

ping effects are factored out. Although they remain 6-dimensional,

they become approximately 4-dimensional functions of a 2D spatial

coordinate u and a 2D half-vector coordinate h, with a correction

that can be effectively learned by a neural model. Furthermore,

the spatial and half-vector domains are amenable to a further de-

composition. Inspired by the triplane representation [Chan et al.

2022], we design a biplane feature representation for this problem:

one plane (a 2D feature texture) for the half-vector domain and

another plane to encode the spatial domain. Look-ups from these

two feature maps are concatenated together with the difference

vector, and are then decoded with a small but universal multilayer

perceptron (MLP). Furthermore, we optionally combine the biplane

representation with an offset network [Kuznetsov et al. 2021] to

handle parallax effects, leading to further enhanced realism.

The explicit feature grid characterization of the half-vector do-

main enables richer information in this domain (e.g., sharp specular

lobes, controllable highlight falloff), allowing our general MLP

decoder to remain small. In contrast, previous methods relied on

neural networks to fully handle high frequencies in the angular

domain, which resulted in reduced accuracy or the need for a much

larger network. The spatial and half-vector planes are optimized per

material, which ensures good quality while keeping optimization

cost relatively low (since the MLP is small and remains fixed while

compressing a given material). Finally, compressing a single BTF

of resolution 512 × 512 takes approximately 5 minutes.

Our representation also allows for efficient light-weight BTF ac-

quisition. By taking about 20 collocated camera-flash images with

a cell phone, our model can approximately recover the entire BTF.

Despite never observing BTF data points with differing view and

light directions, and only observing a subset of half-angle space,

our pretrained model encodes prior information about plausible

behavior of the unobserved directions, which enables this applica-

tion. We demonstrated our model’s ability for acquisition on several

measured materials, including challenging materials like fabrics.

In summary, our model for BTF representation and rendering can

be effectively used with several different sources of data: heavy

exhaustive capture, lightweight capture or synthetic materials with

parallax and displacement effects.

2 RELATEDWORK
Neural based BTF/BRDF compression. Recently, neural networks

have been introduced for BTF/BRDF compression. We categorize

these methods into two groups: specialized methods that only repre-
sent an individual material or BRDF with an over-fitting network,
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Table 1: A comparison of various BTF representation methods is presented in terms of accuracy, network structure, input data
structure, compressing speed, evaluation speed, model generality and compression ratio. Model generality refers to the ability
to represent a wide range of materials with a single network. ⋄ : Can be optionally sparse, but at the cost of accuracy. ★: The
model by Fan et al. [2022] can handle sharp specular materials quite well, but does not support parallax effects. ∗: This is an
average count for a BTF of 400 × 400 spatial resolution, as we describe in Section 3.1 and 3.2.

Method Accuracy Network type Data Comp. speed Eval. cost (FLOPs) Universal decoder Latent dim.

Rainer et al. [2019] • • Encoder-decoder Dense • • 3.5M ✗ 8

Rainer et al. [2020] • Encoder-decoder Dense
⋄ • • 3.8M ✓ 32

Kuznetsov et al. [2021] • • • • Optimization Sparse • • • 0.2M ✗ 7

Fan et al. [2022] • • • •★ Optimization Dense • 105M ✓ 96

Ours • • • Optimization Sparse • • • 13.5M ✓ 18
∗

and generalized methods that are capable of representing universal

materials.

Among the specialized methods, Kuznetsov et al. [2021] repre-

sent a wide range of material appearances at different scales and

support parallax effects, which are later improved by Kuznetsov et

al. [2022] to handle silhouette effects. By representing each BRDF

with a decoder structure, Sztrajman et al. [2021] produce higher

quality on specular materials, at the cost of more storage.

The generalized methods usually require large networks to ex-

press the universal materials. Rainer et al. [2019] use an encoder-

decoder structure per BTF, and it does not generalize across ma-

terials, which is improved by Rainer et al. [2020] to represent all

materials at the cost of lower quality. Other researches have focused

on compressing single BRDFs, like Hu et al. [2020] and Zheng et

al. [2021], rather than representing BTFs. Fan et al. [2022] proposed

a decoder-only structure that can represent universal BRDFs with

high quality. However, due to the large MLP design, their model

has a long compression and evaluation time. Also, none of these

methods natively handle parallax effects, and they all require dense

BTF data as inputs.

Exhaustive BTF capture. Classic acquisition of BTFs [Dana et al.

1999] requires thousands of textures to be captured under controlled

viewing and lighting directions. The capture relies on complex

equipment, such as gonioreflectometer or gantry setups [Haindl

et al. 2012; Sattler et al. 2003], kaleidoscopes [Han and Perlin 2003;

Ihrke et al. 2012] or camera arrays ([Müller et al. 2005; Schwartz

et al. 2013, 2011]). Some efforts make the required captured data

sparser [Brok et al. 2017], but still need more than ten cameras

and hundreds of LEDs. In addition to the complexity of the equip-

ment, the capture process is also time-consuming. A recent detailed

overview of setups for capturing material appearance can be found

in Guarnera et al. [2016]. Our model can effectively compress the

data from such exhaustive capture pipelines, and we also propose a

lightweight BTF acquisition approach that only needs a cell phone

to capture around 20 images.

Lightweight neural SVBRDF acquisition. Lightweight appearance
capture with much fewer photos has also been extensively resear-

ched. Several works even use a single image as input. Please refer

to Guarnera et al. [2016] and Gao et al. [2019] for more compre-

hensive introductions. Some of these methods focus on recovering

SVBRDF maps of stationary textured materials [Aittala et al. 2016,

2015; Zhao et al. 2020] or procedural material parameters [Guo et al.

2020a], while others engage in per-pixel recovery, such as Deschain-

tre et al. [2018; 2019] and Guo et al. [2021]. Recovered SVBRDF

maps are sometimes polluted with highlight burn-in, because of

the lighting and BRDF ambiguities, especially for single-image re-

constructions. In recent years, generative models [Gao et al. 2019;

Guo et al. 2020b; Henzler et al. 2021] are introduced as priors to

recover the SVBRDF maps. They partially alleviate the burn-in is-

sue, but all of these methods rely on an analytical BRDF model (e.g.,

a Cook-Torrance-like microfacet model) whose parameters they

approximate. Unlike these methods, our model is not restricted

to a specific analytic material model, which allows for a better fit

with the real material data. However, it requires more input photos

(we found 20 to be sufficient). Additionally, the reconstruction of

shapes can also be achieved jointly with the recovery of SVBRDFs

by several works [Boss et al. 2020; Li et al. 2018].

3 METHOD
A BTF can be represented as a 6-dimensional function 𝜌 (u, 𝜔𝑖 , 𝜔𝑜 ),
where u is the spatial location, and 𝜔𝑖 , 𝜔𝑜 are the incoming and

outgoing directions, respectively. Each texel of a BTF can be consid-

ered as a generalized BRDF, sometimes termed the apparent BRDF

(ABRDF). ABRDFs may or may not satisfy physical BRDF proper-

ties, but have the same dimensionality and are parameterized with

(𝜔𝑖 , 𝜔𝑜 ).
For clarity, here we define several operations that we will intro-

duce in the following sections of our paper. The training procedure

refers to the training of our network, i.e., the universal MLP. The

compression process is that, after the network is trained, we use

the network to represent a given BTF by feature planes, and this is

achieved by an optimization operation. Note that during compres-

sion, the weights of the trained network are frozen, and only the

biplane features are optimized.

3.1 Design decisions
We will first analyze properties of different previous neural repre-

sentations of BTFs, and then show the insight of our design. Specif-

ically, we care about accuracy, compression speed, evaluation speed,
network generality, and compression ratio. In Table 1, we compare

related works in terms of these properties.
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The main factors affecting these goals include the network struc-

ture (decoder-only optimization or encoder-decoder), network com-

plexity and the input data layout, which can be dense (regularly

sampled) or sparse (randomly sampled). Fan et al. [2022] represent

an ABRDF through optimization, and employ a large general MLP

with dense input data. Their model is able to handle sharp specular

materials effectively. Kuznetsov et al. [2021] use sparse random

input data and a small MLP that is over-fitted to each individual

material. While not as accurate as Fan et al. [2022] in representing

the high specularity, they do support parallax effects through a neu-

ral offset module and enable fast rendering. Rainer et al. [2019] use

dense input data, while Rainer et al. [2020] can optionally accept

sparser input at the cost of accuracy. Both methods train encoders

that compress BTFs quickly; however, the representation accuracy

is more limited.

Compression speed is important; hours or days are typically not

acceptable. For example, Fan et al. [2022] would cost 10 days to

represent a BTF with 400 × 400 resolution due to the optimization

and dense input BRDF data.

Rainer et al. [2019] and Rainer et al. [2020] are faster, as they

utilize a learned encoder and do not need optimization for each

individual material. However, for high-quality reconstruction, their

models need dense BTF data as input, leading to limited compres-

sion speed when they consume all input queries. Kuznetsov et

al. [2021] support relatively fast optimization, thanks to the sparse

input data (random queries) and the small MLP.

Evaluation speed mainly depends on the decoder network size.

We measure the evaluation speed by counting the number of float-

ing point operations (FLOPs) in each network. Kuznetsov et al. [2021]

have the smallest network size among all these approaches, leading

to the fastest rendering speed. The methods of Rainer et al. [2019]

and Rainer et al. [2020] have more parameters and are slower than

Kuznetsov’s model. Our model is slightly slower than Rainer’s mod-

els. The slowest is Fan et al. [2022]’s model due to their large MLP

required to handle the sharp specularity.

Network generality means its ability to represent universal BTFs,

as opposed to over-fitted to a specific BTF. Themodels by Kuznetsov

et al. [2021; 2022] are specialized for each BTF, as is that of Rainer

et al. [2019].

We also compare the compression ratio by comparing the latent

feature dimensionality of these methods. All listed approaches re-

quire a feature texture to represent all texels of the BTF, but the

lengths (numbers of channels) of their feature vectors are different.

Kuznetsov et al. [2021] use 7-channel features, achieving the best

compression ratio in theory, and Rainer et al. [2019] use 8-channels

(though depending on the alignment constraints of hardware mem-

ory may make 7 not smaller than 8). Our model includes multiple

feature components, and one of their sizes is independent of the

BTF’s spatial resolution. Thus, on average, we use 18 numbers for

each texel (for 400 × 400 texels). The latent vector sizes of Rainer

et al. [2020] and Fan et al. [2022] are 32 and 96 for each BRDF,

respectively.

Based on the above analysis, to design a general and practical

neural BTF representation, we should follow several rules:

• a small but universal network structure to ensure high-

performance evaluation and generality,

3
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Figure 2: The structure of our representation network. Our
network consists of three main components: (i) the biplane
feature textures, which are two 3D tensors, individually en-
codes the spatial and the half-vector domains, (ii) an MLP,
comprising six layers with bottleneck structures and skip
connections, and (iii) a color adapter that consists of two
matrices to adjust the color range of the MLP outputs.

• support for sparse input data to enable more efficient com-

pression, and

• an optimization approach instead of a learned encoder, par-

ticularly when the input data is sparse.

Following these rules, our design is an optimization-based frame-

work with sparse data as input and a small general MLP. The main

question is how to design the architecture to make it as accurate as

possible, while keeping the generality at the same time.

3.2 Biplane BTF representation
We will start from the architecture by Fan et al. [2022] (NLBRDF)

and then improve upon its shortcomings.

In NLBRDF, each ABRDF is represented as a latent vector 𝑉 .

This latent vector is decoded with a universal MLP Θ(𝑉 |𝜔𝑖 , 𝜔𝑜 )
for given light and view directions. Each BTF can be individually

regarded as many ABRDFs, and represented with a latent texture,

by projecting the ABRDF at each texel to the latent space through

optimization:

𝜌 (u, 𝜔𝑖 , 𝜔𝑜 ) = Θ(𝑉u |𝜔𝑖 , 𝜔𝑜 ), (1)

where 𝑉u represents the latent feature vector at texel u.
Thanks to the universal MLP, this model is general and provides

a prior for plausible 4-dimensional ABRDFs. However, to represent

the ABRDFs accurately (including sharp specularities), the univer-

sal MLP needs to be quite large (about forty layers with 1 million

parameters). This is a critical factor causing long compression and

evaluation time. Another important observation is that, this method

does not consider the shared information among different ABRDFs

within a BTF, since the neural network is trained on all ABRDFs

from a dataset without considering which ones may plausibly be

part of a single BTF. To overcome these issues, we make two de-

cisions: first, we need to make the function decoded by the MLP

simpler rather than a full 4-dimensional ABRDF; second, we need

to consider the correlation between different ABRDFs of a single

BTF in the spatial domain.

We also observe that a 6-dimensional BTF 𝜌 (u, 𝜔𝑖 , 𝜔𝑜 ) can be

reparameterized with the Rusinkiewicz parameterization [Rusinkie
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wicz 1998] using the half and difference vectors, and the differ-

ence vector d has less influence than the spatial and half-vector

dimensions. Therefore, we reparameterize the ABRDF to 𝜌 (u, h, d),
describe the spatial and half-vector dimensions over feature spaces

and leave the difference vector dimension for the MLP to approxi-

mate. The MLP acts as a decoder for the difference vector combined

with the features. Since we decide to include the spatial domain

in the BTF representation, here, the features include both a spatial

feature and a half-vector feature. Therefore, the formulation of our

model is:

𝜌 (u,h, d) = Θ(𝑉u,𝑉h |d) (2)

where𝑉
h
represents the half-vector feature vector and𝑉u represents

the spatial feature vector.

Finally, we introduce the design of our model, as shown in Fig-

ure 2. We propose a biplane representation using two feature tex-

tures (planes): an H-plane for the half-vector domain and a U-plane

for the spatial domain:{
H-plane: H = [𝑉

h
]𝑟×𝑟 ∈ R𝐿h

U-plane: U = [𝑉u]𝑢×𝑣 ∈ R𝐿u , (3)

where 𝑟 is the half-vector resolution (set as 20 in practice), (𝑢, 𝑣)
is the spatial resolution of the BTF, and 𝐿

h
, 𝐿u are feature sizes

of the half-vector feature and the spatial feature, respectively. We

use the projected hemisphere for half vectors. Note that, since the

half-vector feature is shared among all texels, the storage is saved

by using a small resolution for the H-plane regardless of the BTF’s

large spatial resolution.

Our network takes the look-ups of these feature planes as input.

Given a query (u,h, d), we bilinearly interpolate each feature plane

to get an H-feature 𝑉
h
and a U-feature 𝑉u. These two features are

concatenated and fed into a small MLP, together with the difference

vector d. The MLP outputs the final reflectance value for the given

query. Our architecture remains small: the MLP has 6 layers, and

the feature sizes for the spatial domain and half-vector domain are

both 6.

During training on a dataset of BTFs, the features of two planes

are learned at the same time as the MLP parameters. Once the

network is trained, it can represent any new BTF; to do this, the

parameters of the MLP are frozen, and only the two feature planes

are optimized. Thus, our network is general and can represent any

BTF, though ideally the initial training BTFs should cover the types

of materials we would like to eventually represent. Note that since

the MLP is small, the optimization of a new BTF is efficient.

3.3 Color Adapter
Our current network is already able to represent a variety of BTFs.

However, we observed some color bias when representing unseen

BTFs. Themain reason for the color bias is the limitedmeasured BTF

dataset for training, which is not capable of covering all real-world

materials, especially for color variations.

To overcome this issue, we propose a color adapter module to

enhance the capability of representing various colors in our repre-

sentation network by extending the range of colors in the latent

space. For that, we perform a linear transform on the predicted

value from the MLP, using a weight component and a bias com-

ponent. The weight component 𝐴u is an R3×3 matrix and the bias

component 𝐵u is anR
3×1

matrix. Therefore, our final representation

is expressed as follows:

𝜌 (u,h, d) = 𝐴uΘ(𝑉u,𝑉h |d) + 𝐵u . (4)

We apply this color adapter module only during BTF compres-

sion and not during training. In practice, we found that simulta-

neously optimizing the feature planes and the adapter leads to

noticeable reflectance distribution differences. Thus, we perform

a two-step optimization strategy: fit the grayscale intensity first,

and then fine-tune the color. For that, in the first step, we freeze

the adapter with an average initialization, and only optimize the

feature planes. Then, in the second step, we only optimize the color

adapter to adjust the colors. Note that, although the loss is com-

puted on an averaged value in the first step, the output of the MLP

is still 3-channel. Thanks to the two-step optimization strategy, the

reflectance distribution, as well as the color, is plausible.

3.4 Offset module for parallax effects
To further enhance the representation of non-planar materials, we

optionally use an offset module to enable parallax effects, similar

to Kuznetsov et al. [2021].

The basic idea of the offset module is mapping a texture-space

location u to a new location, given a viewing direction as addi-

tional input. Here, we directly learn the offset vector. This mapping

is learned similarly to the representation model but with fewer

dimensions:

Δu(u, 𝜔𝑜 ) = Θ
off

(𝑉 off

u
|𝜔𝑜 ), (5)

where Θ
off

is an MLP (4 layers of 32 hidden units), 𝑉 off

u
represents

the spatial feature (6 channels) with the same resolution as the

U-plane and 𝜔𝑜 is the view direction.

We do not train a general MLP for the offset module, since the

network is small, and over-fitting each BTF is very fast. Given a

BTF, we jointly optimize the offset module and the biplane features

of the representation network. More specifically, given a query

(u,h, d), we first apply the offset module to get the new location

unew, and feed (unew,h, d) to the representation network to pro-

duce the final radiance. This way, the biplane and offset texture

features are optimized, and the offset MLP is learned. Note that the

optimization for each BTF is computationally efficient (5 mins), and

the storage is acceptable.

To summarize, a BTF is represented by two feature planes and a

color adapter in the representation network, and one feature plane

together with a tiny MLP in the offset network (if it is needed).

3.5 BTF Acquisition
We further propose a lightweight BTF acquisition approach. We

use a hand-held cell phone to take 20 images of a flat sample with

the collocated flash as the light source, thus assuming all view and

light directions are identical.

The problem becomes optimizing a BTF that matches the input

images. We formulate the problem as follows:

min

©­«
𝑗=𝑁∑︁
𝑗=1

(𝐺 (𝐼 𝑗 (u)) − 𝜌𝑡 (u,h𝑗 , d𝑗 ))
ª®¬ , (6)

where 𝑁 is the image count, 𝐼 is the captured images, 𝐺 represents

the energy falloff by distance, and 𝜌𝑡 represents the targeting BTF.
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Since each image is taken w.r.t. a light and view direction, we use

h𝑗 and d𝑗 to indicate the relative directions between each pixel at

position u and the camera for image 𝐼 𝑗 . Note that by collocated

captures, all the difference vectors are always zero, whichwe believe

is challenging for common acquisition methods.

A simple way is to optimize Equation 6 directly by treating

these images as queries to the representation network and directly

optimizing the two feature planes with no additional regularization.

However, the collocated images lack of directional information,

resulting in undefined areas for unseen directions in the H-plane.

Therefore, inspired by Den Brok et al. [2015], we treat it as a linear

combination of the H-planes from the seen BTFs in our training

dataset, instead of optimizing the H-plane directly. This can be

reformulated as:

H𝑡 =

𝑖=𝑀∑︁
𝑖=1

𝑤𝑖H𝑖 , (7)

where𝑀 is the number of known BTFs in training dataset and𝑤𝑖 is

the weight of 𝑖th BTF’s H-planeH𝑖 . In this way, we are learning the

weights of these known H-planes to construct the target BTF. This

linear combination resolves the issues with direct optimization, as

shown in Section 5.2.

4 IMPLEMENTATION DETAILS
4.1 Data preparation
To train our network, we use the measured BTF data from UBO2014

dataset [Weinmann et al. 2014], which includes 84 BTFs of 400×400

texels from seven different categories. Particularly, in Figure 7, we

use Rainer et al. [2020]’s training set split for comparison, which

is a 91% proportion of the UBO2014 dataset. For each BTF, we

resample it into 6.4 × 10
7
random queries. For each query, both the

incoming-outgoing direction and the UV location are independently

and randomly determined.

4.2 Network training
We implement our model and train our representation network

using the AdamW optimizer in PyTorch [Paszke et al. 2019]. For

each training step, we simultaneously train the shared network

weights and individual feature planes of 4 BTFs, by taking 160, 000

random queries from each of them in a batch.We start from learning

rate 1 × 10
−3

for feature planes and 3 × 10
−4

for network weights

and use an exponential learning rate scheduler for both with a 0.9

decay ratio per epoch. The training phase of 30 epochs took us 18

hours on an RTX 2080Ti GPU (11 GB).

4.3 BTF compression and acquisition
To compress a BTF, we perform a two-stage optimization strategy,

as we described in Section 3.3. In the first step (15 epochs), we

initialize the biplane and the optional offset texture (to zeros) and

optionally the offset network. We optimize all the feature planes

(learning rate 1× 10
−2
) and simultaneously train the optional offset

network from scratch (learning rate 3 × 10
−3
). Additionally, we

apply a 2D Gaussian blurring to all feature planes, with a decaying

kernel size from 20 to 0. After that, in the second step (5 epochs),

we only optimize the color adapter (learning rate 1 × 10
−2
).

For the lightweight BTF acquisition application, we capture about

20 pictures and process each calibrated and rectified picture into

400 × 400 collocated queries. We set the batch size to 40, 000, run

for 35 + 15 epochs instead of 15 + 5, and keep the other settings. In

practice, we use a printed frame with markers to calibrate our cam-

era captures, and then calculate all pixels’ actual distance from the

camera and view/light directions by calibrated results. We capture

20 images for a sample. On average, the capture and data prepara-

tion of each BTF material costs 10 mins and the optimization costs

3.5 mins each.

4.4 BTF rendering
We have implemented our methodwith theMitsuba renderer [Jakob

2010] and PyTorch [Paszke et al. 2019]. We use the Mitsuba renderer

to get the shading points (UV, incoming and outgoing directions)

together with the direct lighting, and store them in buffers. Then

we compute the BRDF value by evaluating our BTF representation

network in PyTorch on the GPU, and this value is later multiplied

with the stored lighting to generate the final rendered images. A

1920 × 1080 rendering (1 spp) takes about 1 second by our imple-

mentation.

For rendering with complex illumination, we use multiple im-

portance sampling in our rendering pipeline. For that, the buffers

also store the contributions from light sampling and BRDF sam-

pling together with sampling weights and probability distribution

functions (pdfs). For simplicity, we use Lambertian sampling for all

BTFs; a straightforward extension would be to predict the weight

and width of an additional Gaussian or Blinn-Phong lobe [Fan et al.

2022; Sztrajman et al. 2021].

5 RESULTS
In this section, we compare ourmethodwith previous works, includ-

ing Rainer et al. [2020] and Fan et al. [2022]. All the implementations

are taken from the authors’ websites.

Ours NLBRDF Reference

MSE: 1.5e-4 MSE: 7.1e-5

Figure 3: Comparison between our model and NLBRDF [Fan
et al. 2022] on synthetic BTF. NLBRDF produces higher qual-
ity at the cost of extremely long compression time (8 days),
while our model only costs 5 minutes.

5.1 Quality validation
We first validate our representation and offset networks, and then

illustrate our BTF capturing quality.

Synthetic BTF data. We compare our representation networks

(with and without an offset module), Rainer et al. [2020] and ground

truth computed by path tracing of the synthetic material structure

in Figure 6. Rainer et al. [2020] show an over-blurring appearance
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in the first two rows with apparent parallax effects, since their

method was not designed to handle these. A color bias is visible

in the bottom row. Even without the offset module, our model

produces higher quality than Rainer et al. [2020]. Introducing the

offset module allows more noticeable parallax effects and matches

the reference better.

In Figure 3, we compare our model with NLBRDF [Fan et al.

2022] on synthetic data. To represent such a BTF, NLBRDF needs

200 hours, while our model only needs 5 minutes. Regarding the

storage cost, our model is 5× smaller than NLBRDF. On the other

hand, NLBRDF produces higher quality than ours, while our result

has darker edges, since there are not enough samples at grazing

angles by the random sampling. Note that we do not observe this

darkening effect on other examples besides this rough conductor

material.

Real BTF data. We also validate the effectiveness of our model

on real BTF data, by comparing our representation network with

Rainer et al. [2020] in Figure 7. We use their pre-trained model to

generate their results. For each BTF, we use only about 400 random

samples per texel, while Rainer et al. [2020] use all 22,801 uniform

queries from the dataset. By comparison, we find that with even

sparser data input, our model still outperforms Rainer et al. [2020]

on both seen and unseen data regarding rendering quality. Our

model significantly reduces the required data and has a higher

representation ability.

BTF capturing. Our representation network allows a lightweight

BTF acquisition, by capturing 20 images only with a cell phone.

In Figure 8, we show five examples, including fabrics and leathers.

The rendered results with the captured materials are faithful under

novel view/light conditions.

Complex scenes. In Figure 1, we show a DecorativeSet scene

with a variety of materials, including captured BTFs with our cap-

turing method, BTFs from UBO2014 dataset and synthetic BTFs.

We use our representation network to express all these materials.

5.2 Ablation study
Linear combination for BTF capturing. In our BTF acquisition,

we use a linear combination strategy to learn the H-plane features

rather than optimizing them directly. We validate the influence of

the linear combination strategy in Figure ??. Learning the features

directly leads to a discontinuous feature texture, showing high-

light artifacts in the rendered images. On the contrary, introducing

the linear combination results in a continuous feature texture and

produces more plausible rendered results.

Color adapter. The color adapter is a critical component in our

representation network. We show its impact in Figure ?? on two

synthetic materials, including specular and diffuse ones. In both

cases, the results without adapter have noticeable color bias, while

the adapter overcomes this issue and better matches the references.

5.3 Discussion and limitations
Expressiveness of our representation network. Our representation

network can represent various materials, from synthetic to mea-

sured data. However, our model shows less accuracy than Fan et
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Figure 4: The impact of the linear combination strategy in
our BTF capturing. Directly optimizing the features of the H-
plane (without linear combination) results in incomplete dis-
continuous feature textures (rightmost column) and promi-
nent artifacts around the highlights, while optimizing the
coefficients of the linear combination produces more reliable
results. We arrange the H-planes (6 channels) into 2 RGB
images for visualization. The view directions are shown in
the bottom row.

Ours (w/o adapter) ReferenceOurs (with adapter)

Figure 5: The influence of our color adapter. The rendered
results without the color adapter (left column) show obvious
color bias, which is solved by the proposed color adapter
(middle column).

al. [2022] on high-specular materials, since our network is designed

to be smaller as a trade-off. For the generality, we use a larger MLP

than Kuznetsov et al. [2021] to make our model universal, which

also limits the efficiency of our network. Additionally, there are

some exotic materials with angularly-varying colors that our model

fails to represent, as we show in Figure 9. That is because there are

no such examples in the UBO2014 dataset [Weinmann et al. 2014].

One potential solution could be adding some synthetic materials

into our training dataset and retrain the network.

Acquisition ability. Our universal representation network en-

ables an easy BTF acquisition from real-life materials by cell phone

cameras. However, although our model can handle synthetic BTFs

with heightfield and parallax effects, it does not take effects in
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the BTF acquisition. We find it difficult for the offset module to

converge with the insufficient information in collocated captures.

Diversity of our training dataset. We train our model on the UBO-

2014 BTF dataset, and our BTF acquisition pipeline also relies on

the priority that learned from this collection of BTFs. We believe

that those BTFs cover a good range of common materials, however,

it is far from every one of them. For some exotic materials, we may

need to extend our training dataset, so that our model can represent

them as well.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented a new BTF representation model.

Each BTF is represented by two feature planes, together with a

universal MLP shared by all materials. By considering both angular

and spatial domains as feature spaces, our model is able to repre-

sent BTFs more accurately with faster compression and evaluation

speed than previous work. We also support an offset network to

handle parallax effects, enhancing realism. Our compact represen-

tation also allows for a lightweight BTF acquisition application.

By taking 20 collocated images with a cell phone, our approach

can plausibly recover the entire BTF; this could become a light-

weight tool for capturing BTFs, and would not be possible without

our universal MLP. In summary, our new biplane representation

offers effective compression and rendering for BTF data from mul-

tiple sources: exhaustive heavy capture, lightweight capture and

synthetic NeuMIP-style materials [Kuznetsov et al. 2021].

There are still many potential future researching directions. Re-

garding the representation ability, combining our representation

network with other advanced material capture networks (e.g., Ma-

terialGAN [Guo et al. 2020b]) may improve recovery quality. From

the perspective of material diversity and compatibility, representing

the glinty materials with a neural network is also promising, since

the traditional compression method (e.g., tensor decomposition)

has shown high accuracy for representing such high-frequency

effects [Deng et al. 2022]. Another interesting potential work is

combining neural material with popular text-to-texture approa-

ches [Chen et al. 2022] to achieve a simpler pipeline for neural

texture acquisition.
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Ours (with offset)Ours (w/o offset) Reference

N/A N/A

Rainer et al. [2020]

View directions

Biplanes

Figure 6: Comparison among our model (without and with offset module), Rainer et al. [2020] and the ground truth on synthetic
BTFs. The BTF data is collected by performing path tracing on simulated heightfields in renderers. For BTFs with complex
parallax effects (the first and second rows), Rainer et al. [2020] exhibit blurry results, while our model (without offset) gives
layouts more clearly. Our model (with offset) provides the closest match to the reference. For flat material (third row), Rainer et
al. [2020] show a noticeable color bias, while our model (without offset) has a good agreement with the reference. Note that for
BTFs without a heightfield, we do not use the offset module for compression and prediction.
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Figure 7: Comparison among our model, Rainer et al. [2020] and the references on real BTF data from UBO2014 dataset [2014].
Our model shows much higher quality than Rainer et al. [2020] both visually and quantitatively, even with sparser BTF data.
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Input 
collocated captures

Renderings (novel view & light)

Figure 8: Results of BTF acquisition on several materials (e.g., leathers and fabrics). We capture 20 images with a cell phone
for each material, then recover these materials with our representation network. With such a sparse capture, our model can
recover reliable materials, thanks to the prior information learned from the dataset.

ReferenceOurs ReferenceOurs 

Figure 9: Results of our representation network on materials with angularly varying colors. Because the appearances of such
materials are way far from those in our training dataset, our representation network cannot handle them well.
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