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1 FULL SPHERICAL SHADOWING-MASKING
FUNCTION

In this section, we provide proofs and analysis for our height-
uncorrelated and height-correlated shadowing-masking functions.

1.1 Height-uncorrelated shadowing-masking function
As illustrated in Fig. 1, in the upper hemisphere, the projected area
of microfacets towards direction 𝜔 can be written in the integral
form as

projected area = 𝜔 ·𝜔𝑔 =

∫
Ω+

𝐺1 (𝜔,𝜔𝑚)⟨𝜔,𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚, (1)

where 𝐺1 determines whether a microfacet will contribute to the
projected area. And two possible non-contributing cases are (1)
locally, a microfacet has a backward orientation w.r.t. the given
direction 𝜔 , and (2) distantly, a microfacet will be occluded by other
microfacets regardless of its own orientation 𝜔𝑚 .
Using the local / distant separated form of 𝐺1 and taking advan-

tage of the distant term 𝐺dist
1 ’s independence of any microfacet’s

normal, Eqn. 1 can be solved [Heitz et al. 2016] in the following
form:

𝐺dist
1 (𝜔) = 1

1 + Λ(𝜔) , (2)

where Λ is computed from the normal distribution function by
integrating, as described by Smith [1967].

However, when the direction of interest 𝜔 is from below the sur-
face, Eqn. 1 does not hold anymore, since 𝜔 · 𝜔𝑔 will be negative.
Our first goal is to extend Eqn. 1 to handle this case. This is done
by replacing the projected area with |𝜔 · 𝜔𝑔 |, so the projected area
is always positive and is physically correct no matter which direc-
tion of interest 𝜔 is provided. This leads to our spherical distant
shadowing / masking term:

𝐺dist
1 (𝜔) =

���� 1
1 + Λ(𝜔)

���� = {
1/(1 + Λ(𝜔)), if 𝜔 · 𝜔𝑔 > 0,
−1/(1 + Λ(𝜔)), if 𝜔 · 𝜔𝑔 ≤ 0, (3)

In Fig. 2, we validate the correctness of Eqn. 3, by comparing with
the numerical solution of the integral form of𝐺dist

1 (𝜔) derived from
our extended spherical form of Eqn. 1:

𝐺dist
1 (𝜔) =

|𝜔 · 𝜔𝑔 |∫
Ω± 𝐺

local
1 (𝜔,𝜔𝑚)⟨𝜔,𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

. (4)

As expected, the two solutions match very well. The curves for other
configurations (other NDFs, like Beckmann or other roughness) also
match well.

One important and interesting observation, is that when𝜔 is from
below the macrosurface, the value of 𝐺dist

1 could be greater than
1. This observation can be strictly validated by re-looking at Fig. 1.
As illustrated, the entire shadowing / masking term 𝐺1 gives the

projected areaprojec
ted

 ar
ea

Fig. 1. For both 𝜔 from above the macrosurface (left) or from below the
macrosurface (right), the blue area represents the projected area of micro-
facets which are not back-facing, without considering shadowing, and the
green area represents the projected area considering shadowing, thus𝐺dist

1
is the ratio between the areas of blue and green.

projected area, marked as green, while if we ignore the shadowing
between microfacets, i.e., project a microfacet as long as it’s not
back-facing, we will end up with the blue area, predicted only by
𝐺 local
1 . By its mathematical definition,𝐺dist

1 is the ratio between the
areas of blue and green.
When projecting upwards, since there will never be holes on a

surface, the blue area is always guaranteed to be not smaller than the
green area. Therefore, the distant shadowing / masking term only
performs pruning in this case. However, when projected downwards,
very few microfacets are front-facing w.r.t. 𝜔 , and therefore cannot
pass the local test. This results in much smaller blue area. In this
case, the 𝐺dist

1 term should be greater than 1.

our approach
numerical solution of the integral

1

106

104

102

10-6

10-4

10-2

10-8
0 20 40 60 80 100 120 140 160 180

Fig. 2. We validate our spherical distant shadowing / masking term𝐺dist
1 (𝜔)

computed with our Eqn. 3 against the numerical solution of Eqn. 6.𝐺dist
1 (𝜔)

is visualized logarithmically as a function of the angle 𝜃 between 𝜔 and 𝜔𝑔 .
NDF: GGX model with 𝛼 = 1.0.
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1.2 Height-correlated shadowing-masking function
As shown in Ross et al. [2005], the height-correlated shadowing-
masking function for reflection is:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

, (5)

where both 𝜔𝑖 and 𝜔𝑜 are above the macrosurface.
To extend Eqn. 5 to the full-spherical domain, we first derive the

integral form of 𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) by :

1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

=

∫
Ω+ ⟨𝜔𝑖 , 𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

𝜔𝑖 · 𝜔𝑔
+
∫
Ω+ ⟨−𝜔𝑜 , 𝜔𝑚⟩𝐷 (𝜔𝑚) d𝜔𝑚

𝜔𝑜 · 𝜔𝑔

=

∫
Ω+ 𝐷 (𝜔𝑚)

[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔)

]
d𝜔𝑚

(𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔)
,

(6)
1

1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

=
(𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔)∫

Ω+ 𝐷 (𝜔𝑚)
[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔)

]
d𝜔𝑚

(7)

where 𝜔𝑖 and 𝜔𝑜 are still above the macrosurface.
Since only one of the directions could be below the macrosurface,

we assume it’s the incoming direction for simplicity. Starting from
Eqn. 7, we have:∫

Ω+
𝐷 (𝜔𝑚)

[
⟨𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔)

]
d𝜔𝑚

= (1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )) (𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔) . (8)

If the incoming direction is below the macrosurface, and we denote
it as −𝜔𝑖 , then we have:∫

Ω+
𝐷 (𝜔𝑚)

[
⟨−𝜔𝑖 , 𝜔𝑚⟩(𝜔𝑜 · 𝜔𝑔) + ⟨−𝜔𝑜 , 𝜔𝑚⟩(𝜔𝑖 · 𝜔𝑔)

]
d𝜔𝑚

= (Λ(𝜔𝑖 ) (𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔) + Λ(𝜔𝑜 ) (𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔),
= (Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )) (𝜔𝑖 · 𝜔𝑔) (𝜔𝑜 · 𝜔𝑔), (9)

thus, we get:

𝐺dist
2 (−𝜔𝑖 , 𝜔𝑜 ) =

1
Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

, if 𝜔𝑖 · 𝜔𝑔 > 0 (10)

If we use 𝜔𝑖 to denote the direction below the macrosurface, we
have the equivalence formulation:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
Λ(−𝜔𝑖 ) + Λ(𝜔𝑜 )

, if 𝜔𝑖 · 𝜔𝑔 < 0. (11)

Now we have the complete definition of the height-correlated
shadowing-masking function:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
−Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 > 0,

1
Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 ≤ 0. (12)

The height-correlated shadowing-masking function for the last
bounce is the same as the height-correlated shadowing-masking
function:

𝐺𝑖=𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) = 𝐺dist

2 (𝜔𝑖 , 𝜔𝑜 ). (13)

1.3 Height-correlated shadowing-masking function for the
middle bounce

For the middle bounce, the shadowing-masking function has differ-
ent meaning from the last bounce. For bounce 𝑖 (𝑖 < 𝑘), shadowing-
masking function𝐺𝑖<𝑘

2 (𝜔𝑖 , 𝜔𝑜 ) means the probability that the light
ray with incident direction𝜔𝑖 arrives at the surface and the outgoing
ray with direction 𝜔𝑜 is blocked.
If 𝜔𝑜 is below the macrosurface, the ray will always intersect

with the microgeometry, resulting in

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
1 + Λ(𝜔𝑖 )

, if 𝜔𝑜 · 𝜔𝑔 < 0. (14)

If 𝜔𝑜 is above the macrosurface, we derive a novel formula-
tion. Starting from the original definition of the height-correlated
shadowing-masking function [Heitz et al. 2016]:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝐺dist

1 (𝜔𝑜 , ℎ)𝑃1 (ℎ)dℎ, (15)

where 𝑃1 (ℎ) is the height distribution function.
We propose a novel formulation for the middle bounce from

Eqn. 15 :

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 )

=

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ) (1 −𝐺dist

1 (𝜔𝑜 , ℎ))𝑃1 (ℎ)dℎ,

=

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝑃1 (ℎ)dℎ −

∫ +∞

−∞
𝐺dist
1 (𝜔𝑖 , ℎ)𝐺dist

1 (𝜔𝑜 , ℎ)𝑃1 (ℎ)dℎ,

= 𝐺dist
1 (𝜔𝑖 ) −𝐺dist

2 (𝜔𝑖 , 𝜔𝑜 ),

=
1

|Λ(𝜔𝑖 ) + 1| −
1

|Λ(−𝜔𝑖 ) | + Λ(𝜔𝑜 )
. (16)

Thus, the complete formulation of the middle bounce is:

𝐺𝑖<𝑘
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
|Λ(𝜔𝑖 )+1 | −

1
|Λ(−𝜔𝑖 ) |+Λ(𝜔𝑜 ) , if 𝜔𝑜 · 𝜔𝑔 > 0,

1
|Λ(𝜔𝑖 )+1 | , if 𝜔𝑜 · 𝜔𝑔 ≤ 0.

(17)

2 RECIPROCITY OF OUR MODELS

-

-
-

forward light path  inverse light path

Fig. 3. A subpath (d𝑖−1 to d𝑖−1) from the forward light path (green) and its
inverse (orange).
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In this section, we analyze the reciprocity of our models (height-
uncorrelated and height-correlated). We first prove that height-
uncorrelated model has reciprocity, and then provide a counter
example to show that our height-correlated model doesn’t have
reciprocity.

2.1 Reciprocity of our height-uncorrelated model
As shown in Section 3.4, it’s obvious that the vertex terms have
reciprocity. Here, we prove the reciprocity of the segment term.
Since we are using a separable model for the shadowing-masking
function, the product of the shadowing terms of incident direction
𝜔𝑖 and exit direction 𝜔𝑜 have reciprocity, given any light paths.
Thus, without loss of generality, we only proof the reciprocity of
the internal direction.

Given a direction d𝑖 in the forward path, as shown in Fig. 3 (left),
its segment term is computed by:

𝑠forward𝑖 = 𝑒𝑖𝑝𝑖 , (18)

where 𝑒𝑖 = 1, since the direction is below the macrosurface, and 𝑝𝑖
is defined as:

𝑝𝑖 = 𝐺1 (−d𝑖 ,
−d𝑖 + d𝑖+1

∥ − d𝑖 + d𝑖+1∥
) = 𝐺dist

1 (−d𝑖 ). (19)

Thus, we have

𝑠forward𝑖 = 𝐺dist
1 (−d𝑖 ) =

1
1 + Λ(−d𝑖 )

. (20)

Given a direction in the inverse path, as shown in Fig. 3 (right),
its segment term is computed by:

𝑠 inverse𝑖 = 𝑒𝑖𝑝𝑖 , (21)

𝑒𝑖 = 1 −𝐺1 (−d𝑖 ,
−d𝑖 + d𝑖+1

∥ − d𝑖 + d𝑖+1∥
) = 1 −𝐺dist

1 (−d𝑖 )

= 1 − 1
1 + Λ(−d𝑖 )

=
Λ(−d𝑖 )

1 + Λ(−d𝑖 )

=
Λ(−d𝑖 )

1 + Λ(−d𝑖 )
, (22)

𝑝𝑖 = 𝐺1 (d𝑖 ,
−d𝑖−1 + d𝑖

∥ − d𝑖−1 + d𝑖 ∥
)

= 𝐺dist
1 (d𝑖 )

=
−1

1 + Λ(d𝑖 )

=
1

Λ(−d𝑖 )
. (23)

Thus, we have

𝑠 inverse𝑖 =
Λ(−d𝑖 )

1 + Λ(−d𝑖 )
1

Λ(−d𝑖 )

=
1

1 + Λ(−d𝑖 )
= 𝑠forward𝑖 (24)

Finally, we prove that the segment term has the reciprocity. Al-
though the direction of d𝑖 is pointing downwards in our proof, the
proof still holds, when it points upwards.
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Fig. 4. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse material with roughness 0.25. 𝜃 is the angle between
the incident direction and the normal to the macrosurface.
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Fig. 5. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse material with roughness 0.5. 𝜃 is the angle between
the incident direction and the normal to the macrosurface.
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Fig. 6. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
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the incident direction and the normal to the macrosurface.
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, Vol. 1, No. 1, Article . Publication date: January 2022.



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

6 • Anon. Submission Id: 405

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

= 0.044

= 0.080

= 0.024

= 0.055

= 0.090

= 0.126

= 0.056

= 0.055

= 0.090

= 0.126

= 0.032

= 0.055

= 0.089

= 0.124

= 0.033

= 0.106

b
ou

n
ce

 =
 2

Ours
(height-uncorr.)

Ours
(height-corr.)

SimulatedHeitz et al.

= 0.955

= 0.917

= 0.970

= 0.944

= 0.907

= 0.869

= 0.944

= 0.944

= 0.907

= 0.869

= 0.968

= 0.944

= 0.869

= 0.968

= 0.874

= 0.907

=
 0

.5
=

 0
.0

=
 1

.5
=

 0
.5

=
 0

.0
=

 1
.0

=
 1

.5
=

 1
.0b

ou
n

ce
 =

 1

 x 5 x 5 x 5 x 5

 x 5 x 5 x 5 x 5

 x 5 x 5 x 5 x 5

 x 5 x 5 x 5 x 5

Fig. 9. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough conductormaterial with roughness 0.5.𝜃 is the angle between
the incident direction and the normal to the macrosurface.

Ours
(height-uncorr.)

Ours
(height-corr.)

SimulatedHeitz et al.

= 0.477

= 0.556

= 0.965

= 0.463

= 0.541

= 0.738

= 0.911

= 0.463

= 0.541

= 0.747

= 0.968

= 0.463

= 0.747

= 0.968

= 0.774

= 0.436

= 0.366

= 0.030

= 0.472

= 0.408

= 0.244

= 0.087

= 0.486

= 0.419

= 0.240

= 0.033

= 0.456

= 0.396

= 0.234

= 0.033

= 0.196

= 0.541

=
 0

.5
=

 0
.0

=
 1

.5
=

 0
.5

=
 0

.0
=

 1
.0

=
 1

.5
=

 1
.0b

ou
n

ce
 =

 1
b

ou
n

ce
 =

 2

 x10 x10 x10 x10

 x50 x50 x50 x50

 x50 x50 x50 x50

 x50 x50 x50 x50

Fig. 10. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for rough conductor material with roughness 1.0. 𝜃 is the
angle between the incident direction and the normal to the macrosurface.

, Vol. 1, No. 1, Article . Publication date: January 2022.



685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Supplemental Materials: Position-free Multiple-bounce Computations for Smith Microfacet BSDFs • 7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Ours
(height-uncorr.)

Ours
(height-corr.)

SimulatedHeitz et al.

= 0.730

= 0.789

= 0.985

= 0.722

= 0.783

= 0.900

= 0.966

= 0.722

= 0.783

= 0.903

= 0.987

= 0.722

= 0.903

= 0.987

= 0.917

= 0.252

= 0.190

= 0.010

= 0.268

= 0.209

= 0.099

= 0.034

= 0.270

= 0.210

= 0.095

= 0.012

= 0.265

= 0.207

= 0.095

= 0.013

= 0.075

= 0.783

=
 0

.5
=

 0
.0

=
 1

.5
=

 0
.5

=
 0

.0
=

 1
.0

=
 1

.5
=

 1
.0b

ou
n

ce
 =

 1
b

ou
n

ce
 =

 2

 x10 x10 x10 x10

 x2 x2 x2 x2

 x2 x2 x2 x2

 x2 x2 x2 x2

 x5 x5 x5 x5

 x5 x5 x5 x5

 x10 x10 x10 x10

Fig. 11. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
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1.0 and 0.1. 𝜃 is the angle between the incident direction and the normal to
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Fig. 15. Comparison between our multiple-bounce BSDF models (both
height-uncorrelated and height-correlated), Heitz et al. [2016] model and
simulated data, for anisotropic rough dielectric material with roughness 1.0
and 0.1. 𝜃 is the angle between the incident direction and the normal to the
macrosurface.
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Fig. 16. The difference between renderings using 𝜌 (𝜔𝑖 , 𝜔𝑜 ) and 𝜌 (𝜔𝑜 , 𝜔𝑖 ) .
The difference is because of the noise, rather than the model. We show the
histogram of the difference. From its distribution, we can conclude that the
expectation of the difference image is about zero.

2.2 Reciprocity of our height-correlated model
We use the same example as shown in Fig. 3, to demonstrate that
our height-correlated model does not have reciprocity. Since the
vertex terms are symmetric, the main reason for non-reciprocity is
the segment term.
Given the forward path shown in Fig. 3 (left), the segment term

is:

𝑠forward𝑖 = 𝐺
(𝑖<𝑘)
2 (−d𝑖−1, d𝑖 )𝐺 (𝑖=𝑘)

2 (−d𝑖 , d𝑖+1)

= 𝐺dist
1 (−d𝑖−1)𝐺dist

2 (−d𝑖 , d𝑖+1)

=
1

1 + Λ(−d𝑖−1)
1

1 + Λ(−d𝑖 ) + Λ(d𝑖+1)
. (25)

The segment term for the inverse path shown in Fig. 3 (right) is:

𝑠 inverse𝑖 = 𝐺
(𝑖<𝑘)
2 (−d𝑖 , d𝑖+1)𝐺 (𝑖=𝑘)

2 (d𝑖 ,−d𝑖−1)

=

[
𝐺dist
1 (d𝑖+1) −𝐺dist

2 (−d𝑖 , d𝑖+1)
]
𝐺dist
2 (d𝑖 ,−d𝑖−1)

=

[
1

1 + Λ(d𝑖+1)
− 1
1 + Λ(d𝑖+1) + Λ(−d𝑖 )

]
1

Λ(−d𝑖 ) + Λ(−d𝑖−1)

=
Λ(−d𝑖 )

(1 + Λ(d𝑖+1)) (1 + Λ(d𝑖+1) + Λ(−d𝑖 ))
1

Λ(−d𝑖 ) + Λ(−d𝑖−1)
.

(26)

Since 𝑠forward
𝑖

≠ 𝑠 inverse
𝑖

, our height-correlated model does not have
reciprocity.

3 LOBE VISUALIZATION
In Figs. 4 and the following eleven figures, we compare the visu-
alized lobes for individual bounce between our methods (height-
uncorrelated and height-correlated), Heitz et al. [2016] and simu-
lated data which is obtained by ray tracing on a generated surface
with Beckmann distribution [Heitz and Dupuy 2015]. We perform
the comparison on rough diffuse (albedo set as 1), rough conduc-
tor (Fresnel set as 1) and rough dielectric BSDFs, considering both
isotropic (𝛼 = 0.25, 0.5, 1) and anisotropic (𝛼 = (1.0, 0.1)) cases. We
visualize the lobes with 𝜔𝑖 elevation angles of 0.0, 0.5, 1.0 and 1.5 ra-
dians. 𝐸𝑟 and 𝐸𝑡 denote the total amount of reflected and transmitted
energies, respectively.

, Vol. 1, No. 1, Article . Publication date: January 2022.



1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

10 • Anon. Submission Id: 405

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

For all the bounceswith all the incident angles, our height-correlated
model produces very similar results as Heitz et al. [2016], while
our height-uncorrelated model has larger difference from Heitz et
al. [2016] mostly at grazing angles.
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Fig. 17. The error (MSE) with logarithm scale of our method (height-
correlated) and Heitz et al. [2016] over varying rendering time on the Single
Slab scene with varying roughness.

4 CONVERGENCE VALIDATION
In Figure 17, we show the Mean Square Error (MSE) as a function of
varying rendering time for our method (BDPT, height-correlated)
and Heitz et al. [2016] in the Single Slab scene with varying rough-
ness, considering directional lighting only. With only two samples
per pixel, our method is able to produce very close result to the
ground truth, while Heitz et al. [2016] produces result with a lot of
noise. Increasing the number of samples (rendering time) improves
the quality for both methods, but our method remains consistently
better.
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