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(a) Snapshot of our capturing setup (b) NVS quality comparison with equal capturing time (2 minutes) (c) Novel light rotations
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Fig. 1. We present a lightweight object capture pipeline to reduce manual e�ort, while increasing reconstruction quality and additionally supporting novel
light rotations. (a) We use a consumer turntable to carry the object and a tripod to hold the camera, automatically capturing dense samples from various views
and lighting rotations, obtaining hundreds of high-quality captures within 2 minutes. (b) We develop a rotation-conditional neural radiance representation,
achieving NVS results with less blur and clearer details. (c) With our new representation, we can synthesize results under novel views and lighting rotations.

Novel view synthesis (NVS) from multiple captured photos of an object is

a widely studied problem. Achieving high quality typically requires dense

sampling of input views, which can lead to frustrating manual labor. Man-

ually positioning cameras to maintain an optimal desired distribution can

be di�cult for humans, and if a good distribution is found, it is not easy to

replicate. Additionally, the captured data can su�er from motion blur and

defocus due to human error. In this paper, we use a lightweight object capture

pipeline to reduce the manual workload and standardize the acquisition

setup, with a consumer turntable to carry the object and a tripod to hold the

camera. Of course, turntables and gantry systems have been frequently used

to automatically capture dense samples under various views and lighting

conditions; the key di�erence is that we use a turntable under natural

environment lighting. This way, we can easily capture hundreds of valid

images in several minutes without hands-on e�ort. However, in the object

reference frame, the light conditions vary (rotate); this does not match the

assumptions of standard NVS methods like 3D Gaussian splatting (3DGS).

We design a neural radiance representation conditioned on light rotations,

which addresses this issue and allows rendering with novel light rotations

as an additional bene�t. We further study the behavior of rotations and �nd

optimal capturing strategies. We demonstrate our pipeline using 3DGS as

the underlying framework, achieving higher quality and showcasing the

method’s potential for novel lighting and harmonization tasks.
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Gaussian splatting,

Authors’ addresses: Jiahui Fan, Nanjing University of Science and Technology,
China, fjh@njust.edu.cn; Fujun Luan, Adobe Research, USA, �uan@adobe.com; Jian

Yang , Nanjing University of Science and Technology, China, csjyang@njust.edu.cn;

Miloš Hašan, Adobe Research, USA, milos.hasan@gmail.com; Beibei Wang , Nanjing
University, China, beibei.wang@nju.edu.cn.

1 INTRODUCTION

Creating realistic 3D assets from real-world objects is a long-standing

challenge of computer graphics, with applications to e-commerce,

entertainment, digital heritage, andmore. A typical pipeline captures

multiple views (typically hundreds) of an object under �xed lighting

and transforms the captured images into a 3D asset representation,

which allows novel view synthesis (NVS). Various methods based

on Neural radiance �elds (NeRF) [Mildenhall et al. 2021] and 3D

Gaussian splatting (3DGS) [Kerbl et al. 2023] can be used for this

purpose. Still, high-quality capture requires careful manual labor

and time. With hand-held cameras, one can either capture discrete

images or video sequences, while in both cases, the quality of

captured data can su�er from issues like motion blur and defocus,

especially for capturing videos, as shown in Fig. 2. Moreover, the

constraints on a reasonable sampling of viewpoints may be obvious

to researchers, but manually positioning cameras to maintain the

desired distribution can be di�cult for average users.

Extensive research [Attal et al. 2023; Barron et al. 2021; Chen

et al. 2022; Yu et al. 2024] improves upon the above NVS pipelines.

For example, various lighting setups can be employed, including

unknown environment lighting [Wang et al. 2021; Zhang et al.

2020], or a point light that is collocated with the camera [Bi et al.

2020a,b,c], or separate from the camera [Bi et al. 2024; Gao et al.

2020]. However, controlled lighting generally requires a dark room

and more involved / expensive setups, and becomes out of reach

for most non-expert users. Several works propose to utilize sparse

views and cross-scene feed-forward inference techniques [Charatan
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et al. 2024; Chen et al. 2024]. However, the reconstructed quality

necessarily degrades without dense samples. Dense images can be

captured with various specialized devices [Kang et al. 2023; Ma et al.

2021; Ye et al. 2024], which can reduce the required human labor

and precision, but are not available o�-the-shelf.

Imperfectly sampled distribution

Duplicated samples Blurry pixels

Examples of problems in hand-hold capturing

Rendering ReferenceRendering Reference

Low-quality rendering caused by blurry images

Fig. 2. Illustration of some the common problems of ordinary hand-held
captured pipeline. The final NVS quality can su�er from the imperfectly
sampled distribution and blurry images.

In this paper, we present Free Your Hands: a repeatable and robust

lightweight object capture pipeline designed to reduce manual

workload and standardize the acquisition process, while increasing

reconstruction quality and o�ering novel illumination rotations as

an additional bene�t. We use a consumer turntable to carry the

object and a tripod to support the camera. As the turntable rotates,

we automatically capture dense samples from various views under

rotating environment illumination (as observed from the object’s

frame of reference). This de�nes a controllable and repeatable sam-

pling trajectory, and the tripod-mounted camera minimizes motion

blur and defocus in video sequences, compared to stationary objects

plus hand-held cameras. With this setup, we can easily capture

hundreds of valid images in 2 minutes without much manual e�ort,

while typically under 50 valid images with hand-held multi-view

acquisition can be captured in the same time. We calibrate camera

poses with a standard pipeline [Schonberger and Frahm 2016].

The captured images could theoretically be used in existing NVS

frameworks (NeRF or 3DGS), but the challenge lies in the varying

(rotating) light conditions that break the assumptions of these tech-

niques and are harmful to reconstruction quality. Therefore, we

de�ne a new radiance representation conditioned on light rotations.

Furthermore, we investigate the relationship between the rotation

of objects and the NVS problem, providing experiments and analysis

to �nd an optimal capturing setup that balances human labor and

NVS reconstruction quality.

Of course, a turntable is not novel in computer graphics and

appearance capture. Previous works focus on calibration and pose

estimation from such data [Cheng et al. 2023; Elms et al. 2024; Pusztai

and Hajder 2016], or reconstruction of complex light transport

with controlled light sources[Wu et al. 2018]. Methods that use

point light illumination in a dark room [Bi et al. 2020a,b,c; Zeng

et al. 2023] could use a turntable with minimal changes: if camera

and light poses with respect to the object are known, it does not

matter whether the object is rotating. However, we are the �rst to

investigate the relationship of a turntable under natural environment

illumination to the NVS problem, and to practically develop such a

capture pipeline. To summarize, our main contributions include:

• a novel lightweight object capture pipeline that uses a turn-

table under natural environment illumination, combined with

a tripod to reduce manual workload and standardize the

acquisition process,

• �tting a rotation-conditioned radiance �eld representation,

allowing accurate NVS as well as novel light rotation for

applications such as harmonization,

• two rotation-based sampling strategies tailored for our cap-

ture pipeline, and

• a dataset of objects with varying material properties captured

and reconstructed under di�erent rotating con�gurations

with our pipeline for downstream research.

2 RELATED WORK

Novel view synthesis. Novel view synthesis (NVS) aims to generate

new images from view directions that were not originally observed.

Extensive research on 3D representations has been proposed to

enable realistic novel view rendering. Notably, NeRF [Mildenhall

et al. 2021], 3DGS [Kerbl et al. 2023] and their follow-ups have

garnered signi�cant attention due to their powerful representa-

tion capabilities. NeRF models radiance using integrals over a ray

passing through a volume, and addresses view-dependent radiance

using multilayer perceptrons (MLPs) conditioned on the view ray

direction; this is also true in most follow-up methods [Chen et al.

2022; Müller et al. 2022]. Enhanced anti-aliasing techniques [Barron

et al. 2021, 2022, 2023; Zhang et al. 2020] and improved re�ectance

modeling [Attal et al. 2023; Verbin et al. 2022] have further re�ned

the quality and performance of NeRF-based representations. 3DGS

[Kerbl et al. 2023] employs anisotropic Gaussians to represent scenes,

allowing for great adaptivity to actual geometric content and en-

abling real-time, highly detailed renderings. The view dependence

of radiance is represented using spherical harmonics, which is even

more limited than MLP-based view-dependence.

Camera pose calibration. These above techniques rely on posed

images to densely reconstruct 3D scenes, with the quality of the

input images signi�cantly in�uencing the �nal rendering results.

Structure from Motion (SfM) methods [Hartley and Zisserman 2003;

Mur-Artal et al. 2015; Schonberger and Frahm 2016; Taketomi et al.

2017], particularly COLMAP [Schonberger and Frahm 2016], are

commonly employed to calibrate camera poses and provide initializa-

tion for point-based techniques. Although the quality of input data

is typically assumed to be su�cient for COLMAP to succeed, this

assumption is frequently invalid. Consequently, standardizing the

, Vol. 1, No. 1, Article . Publication date: June 2025.
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data acquisition process and minimizing human error is bene�cial

to ensure robust and reliable performance in NVS applications.

Recently, VGGT [Wang et al. 2025] introduces an end-to-end trans-

former model to automatically predict all key 3D attributes of a

scene by feeding several multi-view images, providing a powerful

solution that is compatible with multiple tasks in 3D computer

vision.

3 METHODS

In this section, we �rst brie�y review the traditional multi-view NVS

strategy with static objects (Sec. 3.1), and then introduce the insight

of covering the "2D" sampling domain of views and light rotations

with our turntable capturing pipeline (Sec. 3.2). Next, to achieve

NVS in the proposed sampling domain, we present a conditional

radiance representation (Sec. 3.3), and we further investigate the

relationship between rotation and NVS quality to �nd an optimal

setup (Sec. 3.4).

3.1 Static sampling

Views

Light rotations

NVS problem
Camera movement

Camera

Fig. 3. The traditional capture strategy visualized in a 2D sampling domain.
The object is stationary, and the camera is placed at multiple positions for
a dense sampling of the NVS problem.

To create a 3D asset from a real-world object for novel view

synthesis, a common approach is to capture hundreds of images by

moving the camera around the object under static light conditions

and then reconstruct the radiance �eld with NeRF or 3DGS or their

variants. The entire pipeline can be formulated as follows:

Ĉstatic = G(V|ą ), (1)

{V} = {Vğ |ğ = 1, 2, ..., ĉ}, (2)

where Ĉstatic represents the radiance �eld, G denotes a reconstruc-

tion operator, which could be based on NeRF or 3DGS or their

variants, V is a set of camera views described by camera intrinsics

and extrinsics, and ą is the illumination condition under which

the images are captured. The camera is placed at ĉ di�erent posi-

tions. The target of NVS is to predict the radiance Ĉ′
static

at a novel

viewpoint Ĭ ′, while the lighting ą stays the same. We can visualize

this formulation in the object frame of reference as a column in a

"2D" sampling domain, where the two "dimensions" represent the

camera view and the light rotation angle, as shown in Fig. 3. Note

that for simplicity, we visualize the camera views as one vertical

dimension. Since the object (and therefore the light rotation) stays

�xed throughout the capture process, we call it the static sampling

strategy.

To get a faithful description of the entire "column", it is necessary

to densely sample the viewpoints. The user should ensure a reason-

able distribution of sampled views and be careful not to introduce

motion blur and defocus issues; this is a di�cult task fo non-experts.

The question is: can we free our hands while maintaining high-

quality NVS reconstruction?

3.2 Rotating sampling

Instead of moving the camera, we can rotate the object itself. An

e�ective approach is to use a turntable to hold the object, allowing

it to rotate automatically. We can position the camera on a tripod at

a �xed location to ensure video (or image burst) sequences without

blur. As the turntable rotates, high-quality sequences are captured

and automatically ensure a uniform sampling along the trajectory.

We call this the rotating sampling strategy. This strategy can be

illustrated in the 2D sampling domain as well, but as a diagonal

line, as shown in Fig. 4 (a). Note again, we visualize the camera

views as one vertical dimension; the diagonal line represents the

intuition that the camera view and light rotation, in the object frame

of reference, are "tied" together.

Views

Light rotations

NVS problem

Object rotation

Camera

(a) Sampling at a fixed camera position

Rotating

Views

Light rotations

Camera

(b) Sampling at multiple camera positions

NVS problem

Object rotations

Rotating

0 2�

0 2�
Fig. 4. Our rotating sampling strategy illustrated in the 2D sampling domain.
The object is rotating on a turntable, and the camera is placed at a fixed
position (a) or multiple positions (b). Each camera position leads to an
individual diagonal line in the sampling domain.

Suppose we place the camera at ĉ di�erent locations, and the

turntable completes a full rotation each time. This strategy can

be illustrated as multiple diagonal lines, as shown in Fig. 4 (b).

Here the intuition is that the camera view and light rotation, in the

object frame of reference, are "tied" together di�erently for each

turntable sequence. From each video sequence corresponding to a

, Vol. 1, No. 1, Article . Publication date: June 2025.
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camera position, we sample Ċ images, resulting inĉĊ images for

reconstruction. Now the reconstruction formulation becomes:

Ĉrotating = G(V, I), (3)

{V} = {Vğ |ğ = 1, 2, ..., ĉ}, (4)

{I} = {IĠ | Ġ = 1, 2, ..., Ċ }, (5)

where Ĉrotating is a radiance �eld that is conditioned on view direc-

tions and light rotations.

Withĉ di�erent camera positions and a full 360-degree turntable

rotation per camera position, we haveĉ diagonal lines in this 2D

sampling domain.Withwell distributed camera positions, we can get

good coverage of the 2D domain with multiple diagonal lines, which

allows high-quality novel view and light rotation synthesis. (We

can further optimize this strategy by letting the turntable rotate for

a shorter angle per camera view, which we will present in Sec. 3.4.)

3.3 Conditional radiance field with rotating lighting

The next question is how to reconstruct the conditional radiance

�eld from these captured images with light rotations. The origi-

nal formulation for radiance �eld reconstruction, as presented in

Eqn. (2), essentially operates as a one-variable regression problem,

predicting radiance values from di�erent viewpoints. In contrast,

our conditional radiance �eld reconstruction approach incorporates

a rotating light environment (in the object frame), making it a

regression problem involving two variables. The key insight is to

�t a radiance �eld as a function of both camera views and light

rotations, and interpret the NVS problem as a one-dimensional slice

of this �eld.

Either 3DGS or NeRF variants can be used as the baseline 3D

representation with our capturing pipeline. In the following, we

choose 3DGS for demonstration, and we also provide results for a

NeRF-based variant in our supplementary materials. In standard

3DGS, radiance is represented using spherical harmonics (SH) basis

functions; making them conditional on varying light rotations is

not convenient. Instead, we use a neural network conditioned on

light rotations (in addition to view directions). Speci�cally, each

Gaussian has an appearance latent (feature) vector, which can be

interpreted by an MLP. The �nal radiance (color) at each Gaussian

is computed as:

ę = MLP(Į |Ĭ, Ă ), (6)

where Į is the latent vector stored in each Gaussian point, Ĭ is

the view direction (a normalized 3D direction), and Ă is the light

rotation angle. See Sec. 5 for more details on the MLP architecture.

We evaluate the network before splatting the Gaussians, and the

�nal pixel colors are blended using standard 3DGS di�erentiable

rasterization, which does not require any modi�cations.

3.4 Swing sampling for optimal NVS quality

With the rotating sampling strategy (ĩ = 2ÿ ), many valid image

samples can be obtained. However, when the object rotates, the

illumination also rotates, introducing more variation of the radiance

at the same time. As a result, the rotation makes the reconstruction

of the radiance �eld more di�cult, and not all images from a rotation

are equally helpful to the �nal NVS, since some samples are far from

the problem in the 2D sampling domain. Therefore, we need to �nd

an optimal rotating strategy to balance the sample number and the

di�culty in reconstruction. In this section, we further investigate the

behavior of rotating capturing and �nd an optimal setting (rotating

angle ĩ) for our capturing pipeline.

Views

Light rotations

NVS problem

Object rotations

Views

Light rotations

Small
swing angle

Camera

Swing

(a) Swing sampling produces better sampling space

Swing angle

Medium 
swing angle

Large 
swing angle

(b) Sampling space produced by different swing angles 
(with the same time cost)

NVS problem

Object rotations

Fig. 5. Our swing sampling strategy illustrated in the 2D sampling domain.
(a) The object is swinging around the original position on a turntable, and
the camera is placed at multiple positions. (b) Di�erent swing angles can
lead to di�erent shapes and densities of the sampling region, given the same
amount of capturing time.

To balance between the sample number and NVS quality, the

key is to �nd the most helpful samples, which means to sample

near the NVS problem (i.e., the original light condition). Instead

of rotating for full circles, we can let the object swing around its

original position back and forth. In this case, the turntable �rst

rotates for ĩ radians (clockwise) and stops forģ seconds. Then, it

starts rotating backward (counter-clockwise) for the same angle ĩ ,

stops for anotherģ seconds, and repeats. During each rotation, we

still set the camera on the tripod to capture video sequences, and

during theģ seconds between each rotation, we manually relocate

the tripod and camera to get ready for the next round. We also

illustrate the swing sampling strategy in Fig. 5 (a).

We can compute the total time cost Ī of such a swing capture as:

Đ = ĉ
ĩ

Ĭ
+ (ĉ − 1)ģ, ĩ ∈ [0, 2ÿ], (7)

where Ĭ is the angular speed of the turntable. The total number of

valid samples can also be represented as:

Č = ĉĩĤ, (8)

, Vol. 1, No. 1, Article . Publication date: June 2025.
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where Ĥ is the number of samples per radian. With the formulation

above, given the same time cost Ī , we can derive and conclude that:

• A larger swing angle generates more samples.

• A larger swing angle involves less human labor, since we

need to relocate the camera forĉ − 1 times.

• A larger swing angle makes a wider sampling region in the

2D sampling domain, leading to images that are less helpful to

the �nal NVS quality. We also illustrate the e�ect of di�erent

swing angles in Fig. 5 (b).

• When ĩ = 0, this swing strategy degrades to static sampling

(Sec. 3.1).

• When ĩ = 2ÿ , this swing strategy degrades to rotating sam-

pling (Sec. 3.2).

Unfortunately, it is nontrivial to �nd an analytical solution for

the optimal swing angle ĩ̂ . However, with experiments, we show

the relationship between swing angle ĩ and the �nal NVS quality in

Fig. 6 and the peak signal-to-noise ratio (PSNR) values in Table 1.

As a conclusion, we �nd that ĩ∗ = 0.2ÿ achieves a good balance

between manual labor and NVS quality, and we also provide some

rendering comparisons in our supplementary.

Table 1. The comparison of NVS qualities with di�erent swing angles in the
same capturing time (2 minutes). The qualities are evaluated in PSNR (↑),
and we take the Clown scene as an example. Overall, ĩ∗ = 0.2ÿ achieves
a good balance between the manual labor, sample number and final NVS
quality.

Swing angle ĩ Total images Č NVS quality (PSNR)

0 (static) 50 37.73

0.05ÿ 54 36.34

0.1ÿ 96 38.47

0.2ÿ 140 38.80

0.25ÿ 162 38.08

0.5ÿ 234 36.79

ÿ 324 36.61

2ÿ 360 37.17

Manual labor

Sample number

Sample effectiveness

Swing angle

NVS quality

2�

Optimal sampling

Swing angle 0.2�0

Fig. 6. The trends of the manual labor, sample number and sample
e�ectiveness, and their combined e�ects on the final NVS quality when
increasing the swing angle. We observe that ĩ∗ = 0.2ÿ produces the highest
NVS quality, achieving a good balance among all these factors.

4 APPLICATIONS

With our proposed capturing pipeline, we can capture images and

predict not only the NVS results at the original light condition,

but also any light rotations at any views, allowing for extensive

applications in di�erent scenarios. Here, we outline several of these

applications, and we also demonstrate them in Sec. 6.3.

NVS with light rotations. One obvious application of our pipeline

is for NVS, by predicting the radiance �eld at any given light rotation.

Additionally, our pipeline also naturally supports adjusting the light

condition for objects at given views, which can be used in tasks like

harmonization. Note that our prediction only works for the rotation

angles within the range of captured data. Therefore, in terms of

adjusting light conditions, we suggest that users increase the swing

angle to have more �exibility.

NVS with distilled SH representation. Besides using the neural

representation directly, it can be distilled into other representations

(e.g., SHs) by �xing a light rotation angle. The distilled represen-

tation allows novel view synthesis, while being compatible with

existing 3DGS-based applications.

Novel lights from combination of rotations. Since our neural repre-

sentation encodes the radiance �eld with multiple light conditions,

we can relight the object by combining di�erent light rotations (e.g.,

front-lit and back-lit ones), achieving extensive light conditions.

Furthermore, if the original environment lighting is known, it is

possible to approximately �t a target lighting using the known

rotations, in order to achieve even more complex relighting tasks.

5 IMPLEMENTATION DETAILS

Capturing and dataset setups. We use the 48 mm camera from an

iPhone 15 Pro Max for capturing, and the snapshot of our capturing

environment is shown in Fig. 1 (a). We provide both the rotating

dataset (i.e., ĩ = 2ÿ ) and swing dataset (i.e., ĩ = 0.2ÿ ) for extensive

validation and downstream research. Both dataset consists of 35

real-world objects with di�use, furry, or glossy appearances. For

rotating capturing, we capture ĉ = 8 turntable videos and select

Ċ = 60 frames from each video, resulting in a total of 480 images.

For swing capturing, we set ĉ = 20 and Ċ = 7, resulting in 140

images. During capturing, we position the camera approximately

every ÿ
4 radians around the object, while varying elevation angles.

To obtain su�cient samples, a capturing process takes us from 2

minutes (ĩ = 0.2ÿ ) to 3 minutes (ĩ = 2ÿ ).

Dataset preparation. After capturing, we crop the video into 1440×

1440 rotation segments and randomly select frames from each rota-

tion. Since the turntable rotates at a �xed angular speed, we divide

the rotation angle by the number of frames to determine the rotation

angle at each selected timestamp. We then conduct calibration using

COLMAP [Schonberger and Frahm 2016], and �nally remove the

background andmask themusing SAM2 [Ravi et al. 2024]. Compared

to the traditional static capturing, our pipeline does not introduce

any extra procedures in data preparation. Preparing a dataset of an

object usually takes us 30 minutes.

MLP architecture and optimization. In our neural radiance rep-

resentation, the MLP is 128-channel with 2 hidden layers, using a

level-1 frequency encoding for the input view directions and light

rotations. The latent vectors are 8-dimensional. During optimization,

the network weights and the latent vectors are jointly updated and

, Vol. 1, No. 1, Article . Publication date: June 2025.
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optimized to �t the appearance under the rotating light conditions.

We use the same loss functions from the standard 3DGS.

6 RESULTS

6.1 Experiment setup

We validate our pipeline on our captured and synthetic datasets. We

run all experiments on an Ubuntu 22.04 LTS distribution powered

by Windows Subsystem Linux 2. The optimization typically takes

about 5-10 minutes on an RTX4090 GPU. We implement our neu-

ral radiance representation based on 3DGS [Kerbl et al. 2023] for

comparison. There are other advanced approaches [Liu et al. 2024;

Meng et al. 2024; Yu et al. 2024] that can enhance the NVS quality,

while they are orthogonal to our pipeline. We did not perform

comparisons with them, since it is straightforward to implement

our method based on any 3DGS-based NVS approaches.

6.2 �ality validation

Table 2. The NVS quality of our neural radiance representation and 3DGS
on our captured datasets. We choose ĩ = 0.2ÿ for the best NVS quality. All
testing sets are with static capturing strategy. The results are evaluated in

PSNR (↑) , and the best results are colored in red .

Scene Ours 3DGS Scene Ours 3DGS

Alpaca 34.48 33.11 Jar 35.40 34.24

Bear 35.68 35.03 JoyCon 37.43 36.76

BirdGreen 34.84 33.71 Kirby 38.20 37.54

BirdPink 35.25 34.80 Kodak 34.42 33.06

Burger 37.92 36.22 Monza 38.36 37.46

Cap 28.55 26.31 Mug 31.08 30.22

Capybara 36.09 35.21 Octopus 40.35 38.70

CapySmall 38.71 38.41 Panda 35.19 33.06

Cat 34.22 33.73 Pearl 38.47 37.02

China 37.71 36.96 Penguin 34.73 33.20

Clown 38.42 35.92 Pine 31.63 29.69

Controller 34.83 34.00 Rabbit 30.69 29.83

Dinosaur 41.80 39.66 Rider 37.04 36.33

Dolphin 39.35 38.16 RiderSmall 38.98 37.49

Eggplant 36.09 34.30 Sparrow 35.13 33.83

Ferrari 36.52 35.45 Sunglasses 33.91 33.71

Fries 39.38 38.69 Truck 37.42 35.31

HanSolo 37.45 36.29 Tuan 36.01 35.00

Average 36.15 34.95

The validation of our method includes two aspects: the NVS and

the light rotation. Since we can choose di�erent swing angles or

di�erent purposes, we provide both the rotating dataset (ĩ = 2ÿ )

and swing dataset (ĩ = 0.2ÿ ) for validation.

For NVS quality, we compare with traditional NVS methods on

our swing datasets in Table 2 and Fig. 8. The training set is captured

with swing angle ĩ = 0.2ÿ and the testing set is static. Our method

can produce higher quality compared to existing NVS methods on

all scenes.

Table 3. The rendering quality at novel light rotations of our neural radiance
representation and 3DGS on our captured datasets.We choose ĩ = 2ÿ to best
support light rotations. All testing sets are with rotating capturing strategy,
where the rotating angles vary from 0 to 2ÿ . The results are evaluated in

PSNR (↑) , and the best results are colored in red .

Scene Ours 3DGS Scene Ours 3DGS

Alpaca 31.83 29.83 Jar 27.82 23.48

Bear 33.50 25.67 JoyCon 37.74 30.54

BirdGreen 32.94 23.96 Kirby 36.44 29.55

BirdPink 32.90 27.05 Kodak 30.43 27.51

Burger 37.20 29.80 Monza 36.11 29.54

Cap 27.43 24.97 Mug 29.71 26.56

Capybara 33.16 22.79 Octopus 36.61 27.54

CapySmall 34.70 25.04 Panda 28.58 25.80

Cat 30.35 26.01 Pearl 37.26 29.09

China 33.95 30.07 Penguin 28.80 24.00

Clown 39.95 35.96 Pine 24.16 21.86

Controller 33.83 29.73 Rabbit 30.05 22.99

Dinosaur 35.25 32.52 Rider 28.12 25.41

Dolphin 38.03 33.51 RiderSmall 35.56 31.04

Eggplant 37.82 27.96 Sparrow 29.72 25.53

Ferrari 32.37 30.63 Sunglasses 32.20 28.75

Fries 34.96 28.77 Truck 35.44 25.62

HanSolo 36.06 31.88 Tuan 30.79 23.86

Average 33.10 27.63

Table 4. The comparison of NVS qualities on synthetic datasets. All
results are evaluated in PSNR (↑) , and the top-3 results are marked in

red / orange / yellow . Note that in this comparison, the testing set is

static. Our method produces higher-quality results from training images
with rotating lights than 3DGS does with common dataset setups (100
static images), and our swing sampling strategy produces the overall highest
quality, even compared to 3DGS with fairly su�icient ideally sampled
training images.

Scene
Ours (140 Ours (480 3DGS (100 3DGS (480

swing) rotating) static) static)

Armadillo 36.73 35.63 35.94 36.52

Ficus 35.45 34.15 34.00 35.12

Flowers 32.05 31.89 30.23 31.24

Lego 33.89 33.32 32.13 32.47

Average 34.53 33.74 33.07 33.83

For the rendering quality of light rotations, we compare with

traditional NVS methods on our rotating datasets in Table 3 and

Fig. 9. The training set is captured with rotating angle ĩ = 2ÿ , and

the testing set is also rotating. By comparison, we �nd that our

method has a much higher quality consistently. In particular, 3DGS

exhibits an overly dark appearance at grazing angles and obvious

blurriness on the furry surface, as it cannot handle rotating light

conditions. Although they can reconstruct good geometries, the

radiance (especially the shadow e�ects) is incorrectly predicted.
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In contrast, our method produces results that closely match the

reference, thanks to the conditional radiance representation.

In Fig. 1 (b), we compare theNVS quality from our swing capturing

with that from the traditional static capturing in equal capturing

time (2 minutes). We apply our neural radiance representation on

both datasets to show the di�erence in the qualities of captured data.

We set the rotation angle to be zero for the traditional capturing. Our

capturing pipeline is not only easier to perform, but also producing

higher-quality reconstruction with more detailed appearances.

In Table 4 and Fig. 7, we compare the NVS quality with 3DGS,

assuming that we provide it with ideally captured datasets. Our

neural radiance representation achieves higher-quality renderings

than those from 3DGS with a common setup (100 static images) and

is still competitive with results of 3DGS from abundantly sampled

static views (480 static images). Note that in practice, even for 480

images with rotating lights, we only need less than 4 minutes to

capture them, while capturing 100 high-quality static images already

costs more than 4 minutes of di�cult manual labor.

33.7833.91 PSNR

Ours 

(140 swing)
Reference

36.96 36.25

Ours 

(480 rotating)

3DGS

(480 static)

3DGS

(100 static)

32.67

PSNR36.56

Fig. 7. Comparison of NVS results by our captured datasets and 3DGS with
ideally sampled static datasets. The best/second-best results are marked
as bold/italic. Our neural radiance representation achieves high-quality
renderings, and is competitive even with results of 3DGS from abundantly
su�icient training images.

In our supplementary material, we provide ablation studies on

two crucial factors (the number of camera positionsĉ and the swing

angle ĩ). In addition, we also show the optimal swing angles under

di�erent frequencies of the environment lights. Please refer to them

for more details.

6.3 Validation on applications

NVS with light rotations. In Figs. 1 (c) and 10, we showcase the

rendered result under di�erent light rotations. With varying lighting

conditions, our rendered results exhibit overall reasonable lighting

outcomes. We also show the harmonization results in Fig. 11 and

demonstrate this application in our supplementary video.

NVS with distilled SH representation. After selecting a lighting

angle, our neural representation can be easily distilled into an SH

representation. This way, it can �t existing 3DGS-based applications.

In Fig. 13, we show the NVS results rendered with the distilled SHs

under three di�erent lighting rotations after a 3-minute distillation

process. The distilled SHs achieve close qualities to the reference at

the speci�ed rotation angles. Note that all the results are obtained

from only one training pass.

Novel light from combination of rotations. Our neural represen-

tation encodes the radiance �eld with multiple light conditions,

which allows us to combine di�erent light rotations (e.g., front-lit

and back-lit ones), achieving a fused light condition. In Fig. 12, we

demonstrate the rendering results by combining the front-lit and

the back-lit scenarios, with di�erent lighting colors. This way, our

method enables the creation of rich and diverse assets.

6.4 Discussion and limitations

More �exible relighting. Our capture pipeline enables NVS with

di�erent light rotations or a combination of various lighting con-

ditions. However, our method still cannot fully or �exibly support

relighting in entirely new environments. We will address this in

future work.

Data processing. Our capture pipeline relies on COLMAP [Schon-

berger and Frahm 2016] to calibrate our camera poses. However,

the changing light condition during the capture slightly raises the

di�culty of calibration. While using a checkerboard to carry the

object can partially alleviate this issue, a COLMAP-free calibration

approach will further improve our capture quality. Besides, like

traditional capturing methods, the �nal quality of our datasets

might be occasionally hurt due to the inconsistent segmentation

from the large model [Ravi et al. 2024]. Therefore, a more accurate

background removal approach will also help our pipeline.

Alternative NVS frameworks. We chose the basic 3DGS framework

to validate the e�ectiveness of our capturing pipeline. However,

there are still many advanced approaches that provide even higher

NVS qualities. Their work is orthogonal to ours, and it is straight-

forward to adapt them into our pipeline to achieve advanced NVS

qualities.

7 CONCLUSION

In this paper, we have presented Free Your Hands, a lightweight

object-capturing pipeline to reduce manual workload, standardize

the acquisition process, and ensure repeatability. The proposed

capture pipeline consists of a simple setup: a consumer turntable

to hold the target object and a tripod to hold the camera. As the

turntable rotates, we can easily capture hundreds of valid images

in several minutes without hands-on e�ort, minimizing human

errors. Then, we design a neural radiance representation conditioned

on light rotations tailored for the captured images, as well as an

optimal rotation con�guration for our pipeline in terms of the �nal

NVS qualities. Our capture pipeline can be integrated into both

NeRF- and 3DGS-based frameworks. We have demonstrated the

e�ectiveness of our pipeline in the 3DGS-based framework across

various applications, including NVS under di�erent light rotations

or combined lighting conditions and harmonization in novel light

conditions, showing higher quality in NVS.

There are still many potential future research directions. One

promising avenue is to expand the neural radiance representation

into a fully relightable representation. Additionally, improving the

NVS and relighting quality on some di�cult types of objects, such as

re�ective or transparent ones, is also an interesting and challenging

direction.
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Ours 3DGS Reference

34.8061 PSNR

Panda

Ours 3DGS Reference

34.6488 PSNR

Cat

34.6351 PSNR

Jar

39.1529 PSNR

Jar

32.5092 PSNR

Sparrow

31.5446 PSNR

Tuan

Fig. 8. Comparison of NVS results by our neural radiance representation and 3DGS on our swing datasets. The best results are marked as bold. Our capturing

pipeline can produce higher-quality NVS results compared to 3DGS, and the whole capturing process is without much manual e�orts.

Ours 3DGS Reference

29.3658 PSNR 

PSNR35.3997

34.4052 PSNR

Alpaca

Penguin

Cat

Fig. 9. Comparison of rendering results with novel light rotations by our neural radiance representation and 3DGS on our rotating datasets. The best results

are marked as bold. 3DGS cannot handle the rotating light conditions, resulting in wrongly predicted shadow/light e�ects. In contrast, our pipeline provides

closer results to the reference.
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Our

prediction

Light

rotation

Rabbit

Our

prediction

Light

rotation

Fig. 10. The rendering results of our model from a novel view and novel light

rotations. Our method can e�ectively predict reasonable light transition

when light rotates, as our light-conditioned neural representation is learned

based on samples from multiple light conditions.

Adjusting light rotations

Fig. 11. Since our conditional neural representation encodes light rotations,

we can achieve harmonization by simply adjusting the rotation angle to

find the best-suitable appearance of lights and shadows.

Front-lit Back-lit Novel light condition

Combination

Combination

Rabbit

Alpaca

Fig. 12. Relighting the objects by linear combinations of light rotations

with RGB weights. Top: blue and purple light combined. Bo�om: yellow and

green light combined.

Ours
(neural radiance
representation)

Ours
(distilled SHs 

with 
rotation = 0)

Reference

View 2 View 3

PSNR

View 1

PSNR PSNR

33.2645 34.3241 31.9074

33.3189

32.0567

33.2549

Ours
(distilled SHs 

with 
rotation = 0.45�)

Ours
(distilled SHs 

with 
rotation = 0.67�)

Fig. 13. The NVS result with SHs distilled from our trained model. By a

simple distillation process, our conditional radiance representation can be

exported into a static radiance field at a specific light rotation angle for

simple NVS and easy cooperation with other applications.
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In the main paper, we have proposed Free Your Hands, a lightweight

turntable-based object capturing pipeline. This pipeline allows for

rendering with novel views and light rotations. We have also in-

troduced a novel formulation of NVS problems in a 2D sampling

space, and managed to �nd an optimal sampling strategy to build

our pipeline. In this supplementary, we provide:

• results with a NeRF-based underlying representation [Chen

et al. 2022],

• ablation studies on two crucial factors (number of camera

positionsĉ and swing angle ĩ) regards the �nal NVS quality,

• and the trends of optimal swing angles with the environment

lighting of di�erent frequencies.

1 NERF-BASED IMPLEMENTATION

37.2928.6123.69

ReferenceRotating M = 1 M = 4 M = 8

PSNR

Reference

PSNR

Swing M = 5 M = 10 M = 20

38.1433.6427.31

Fig. 1. The e�ect of the number of camera positions (ĉ) in our pipeline.
Given only few camera position, we observe one “diagonal line” in the 2D
sampling space, resulting in severe over-fi�ing. In practice, we chooseĉ = 8

for our rotating datasets andĉ = 20 for swing datasets.

Our pipeline is �exible and compatible to both 3DGS- and NeRF-

based NVS approaches. We use neural features to represent the

radiance, together with an MLP that is able to decode the feature

vectors into RGB colors, shared by all neural features. In NeRF, the

radiance is already represented by neural features. Therefore, we

simply add the light rotation as a conditional input to the MLP

decoder. For e�ciency, we choose TensoRF [Chen et al. 2022] as the

Authors’ addresses: Jiahui Fan, Nanjing University of Science and Technology,
China, fjh@njust.edu.cn; Fujun Luan, Adobe Research, USA, �uan@adobe.com; Jian

Yang† , Nanjing University of Science and Technology, China, csjyang@njust.edu.cn;

Miloš Hašan, Adobe Research, USA, milos.hasan@gmail.com; Beibei Wang† , Nanjing
University, China, beibei.wang@nju.edu.cn.

Table 1. The NVS quality of our neural radiance representation and TensoRF
on our captured datasets. We choose ĩ = 0.2ÿ for the best NVS quality. All
testing sets are with static capturing strategy. The results are evaluated in

PSNR (↑) , and the best results are colored in red .

Scene Ours TensoRF Scene Ours TensoRF

Alpaca 39.05 38.58 Jar 40.14 39.54

Bear 40.83 40.37 JoyCon 37.49 36.94

BirdGreen 36.94 35.52 Kirby 44.32 43.88

BirdPink 41.27 40.69 Kodak 33.02 32.60

Burger 38.75 38.33 Monza 43.23 42.78

Cap 38.91 38.45 Mug 30.96 30.43

Capybara 39.77 39.17 Octopus 41.67 41.08

CapySmall 30.83 30.35 Panda 37.36 37.03

Cat 36.05 35.54 Pearl 40.74 40.77

China 42.80 42.32 Penguin 36.17 35.71

Clown 43.28 43.01 Pine 35.25 34.66

Controller 38.96 38.38 Rabbit 34.56 34.05

Dinosaur 44.22 43.76 Rider 37.98 37.48

Dolphin 44.37 43.93 RiderSmall 39.12 38.78

Eggplant 38.20 37.98 Sparrow 36.76 36.49

Ferrari 35.82 35.27 Sunglasses 32.46 32.08

Fries 41.64 41.26 Truck 39.07 38.45

HanSolo 35.14 34.54 Tuan 39.51 38.94

Average 38.51 38.03

Reference

PSNR35.9036.23 36.58 37.60

37.42 34.31 34.91 35.78 PSNR

s = 0 (static) s = 0.05� s = 0.1� s = 0.2�

s = 0.25� s = 0.5� s = � s = 2� Reference

Fig. 2. The NVS results of di�erent swing angle with the same capturing
time (2minutes). By comparison, ĩ∗ = 0.2ÿ achieves a good balance between
the manual labor and final quality.

baseline method to validate our pipeline, since its training time is

much shorter than the original NeRF [Mildenhall et al. 2021].

, Vol. 1, No. 1, Article . Publication date: June 2025.
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Table 2. The rendering quality at novel light rotations of our neural radiance
representation and TensoRF on our captured datasets. We choose ĩ = 2ÿ to
best support light rotations. All testing sets are with rotating capturing
strategy, where the rotating angles vary from 0 to 2ÿ . The results are

evaluated in PSNR (↑) , and the best results are colored in red .

Scene Ours TensoRF Scene Ours TensoRF

Alpaca 36.24 26.10 Jar 30.40 25.05

Bear 36.70 26.89 JoyCon 36.34 30.99

BirdGreen 35.77 28.52 Kirby 41.29 32.77

BirdPink 37.05 26.44 Kodak 29.40 23.73

Burger 39.45 33.06 Monza 38.44 27.94

Cap 32.38 16.57 Mug 29.42 25.85

Capybara 34.90 24.39 Octopus 39.88 30.37

CapySmall 28.66 25.32 Panda 28.02 25.82

Cat 31.54 23.88 Pearl 38.17 27.25

China 34.91 28.57 Penguin 28.35 22.36

Clown 40.59 34.47 Pine 27.65 20.11

Controller 36.91 20.69 Rabbit 31.72 22.50

Dinosaur 34.19 30.89 Rider 28.58 24.97

Dolphin 37.81 33.92 RiderSmall 37.09 26.71

Eggplant 39.00 28.92 Sparrow 29.74 21.32

Ferrari 31.22 30.11 Sunglasses 32.18 28.78

Fries 37.28 29.06 Truck 35.89 26.15

HanSolo 34.28 31.32 Tuan 30.84 26.61

Average 34.23 26.90

We provide the quantitative results in Tables 1 (for NVS qualities)

and 2 (for light rotations). Overall, our method outperforms TensoRF

on both datasets.

2 ABLATION STUDY

There are two key factors that decide the �nal NVS quality recon-

structed from our captured dataset, and we provide ablation studies

on them.

In Fig. 1, we show the rendering results of di�erent numbers

of camera positions (ĉ) with our swing and rotating captures. For

fairness, we provide the same total number of samples by increasing

the frame numbers per rotation (Ċ ). By comparison, increasing

the number of camera locations improves the rendering quality.

The main reason is that sparse locations lead to uneven sampling

on the 2D sampling space, which can lead to over�tting during

optimization and hurt the rendering quality.

In Fig. 2, we compare the rendering quality of di�erent swing an-

gles (ĩ) within the same capturing time (2 minutes). By comparison,

ĩ
∗
= 0.2ÿ provides the best rendering quality, as we described in

the main text of this paper.

3 ENVIRONMENT LIGHT FREQUENCIES

By introducing the swing angles, we balance between the NVS

di�culty and the number of samples. Generally, with a larger swing

angle, the radiance variation when rotating objects is more obvious.

We experiment and validate our choice of the optimal swing angle

with a common indoor environment lighting. However, if the envi-

ronment light is of low frequency, which means the illumination

varies little with rotation, it might leads to di�erent optimal swing

angles.

Theoretically, with lower-frequent (i.e., softer) lights, the swing

angle should be increased. We validate this by gradually applying a

Gaussian blur on an environment map and �nd their corresponding

optimal swing angles. The blurred environment maps and their

quantitative results are shown in Fig. 3. In conclusion, for common

environments, ĩ∗ = 0.2ÿ is a suggested choice for balancing the

human labor and NVS quality.

Environment lights

& kernel size (%height)
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swing angles
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2�0.2�0

2�0.2�0

2�0 0.5�0.2�
0.5�
0.5�
0.5�
0.5�

300% 2�0 0.5�0.2�
Fig. 3. Relationship between the NVS quality and swing angle in capturing
with environment lights of di�erent frequency. When the light becomes
so�er, the optimal swing angle is also relatively larger (from 0.2ÿ to 0.5ÿ ).
Overall, for common environments, ĩ∗ = 0.2ÿ can achieve the best quality.

REFERENCES
Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:

Tensorial radiance �elds. In European conference on computer vision. Springer, 333–
350.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
�elds for view synthesis. Commun. ACM (2021).

, Vol. 1, No. 1, Article . Publication date: June 2025.


	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Static sampling
	3.2 Rotating sampling
	3.3 Conditional radiance field with rotating lighting
	3.4 Swing sampling for optimal NVS quality

	4 Applications
	5 Implementation details
	6 Results
	6.1 Experiment setup
	6.2 Quality validation
	6.3 Validation on applications
	6.4 Discussion and limitations

	7 Conclusion
	References
	1 NeRF-based implementation
	2 Ablation study
	3 Environment light frequencies
	References

